A DFT study on the interaction of alprazolam with fullerene (C20)

Document Type : Research Article

Authors

1 Young Researchers and Elite Club, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran

2 College of Health Sciences, University of Human Development, Sulaimaniyah, Kurdistan region of Iraq

Abstract

In this paper, the detection of alprazolam by fullerene (C20) was studied by infra-red (IR), frontier molecular orbital (FMO) and natural bond orbital (NBO) computations. All of the computations were done by density functional theory method in the B3LYP/6-31G (d) level of theory. The calculated adsorption energies, Gibbs free energy changes and thermodynamic constants showed alprazolam adsorption is experimentally possible, spontaneous and irreversible. The calculated values of enthalpy changes and specific heat capacity demonstrated AP interaction with fullerene is exothermic and C20 can be used as a recognition element for the construction of a new thermal sensor for detection of alprazolam. The DOS spectrums showed the bandgap of fullerene decreased from 7.190 eV to 4.460 eV (%-37.9) in the alprazolam adsorption process and this nanostructure is a good electroactive sensing material for development of novel electrochemical sensors for alprazolam determination. Some important structural parameters including chemical hardness, chemical potential, electrophilicity, maximum charge capacity and the dipole moment of alprazolam in the adsorption process was also investigated.

Keywords


  1. P. Samiec, Z. Navratilova, Electrochemical behaviour of bromazepam and alprazolam and their determination in the pharmaceutical tablets Lexaurin and Xanax on carbon paste electrode. Monatsh. Chem., 148 (2017) 449-455.
  2. Y. Panahi, A. Motaharian, M. R. Milani Hosseini, O. Mehrpour, High sensitive and selective nano-molecularly imprinted polymer based electrochemical sensor for midazolam drug detection in pharmaceutical formulation and human urine samples, Sens. Actuat. B. Chem., 273 (2018) 1579-1586.
  3. M. R. Ganjali, H. Haji-Hashemi, F. Faridbod, P. Norouzi, Potentiometric Determination of Alprazolam based on Carbon Paste and PVC membrane Electrodes, Pharmaceutical Formulation and Human Serum. Int. J. Electrochem. Sci., 7 (2012) 1470 – 1481.
  4. H J. Narang, N. Malhotra, C. Singhal, A. Mathur, A. Krishna PN, C. S. Pundir, Detection of alprazolam with a lab on paper economical device integrated with urchin like Ag@ Pd shell nano-hybrids. Mater. Sci. Eng. C., 80 (2017) 728-735.
  5. N. L. Fincur, J. B. Krstic, F. S. Šibul, D. V. Šojic ´, V. N. Despotovic, N. D. Banic, J. R. Agbaba, B. F. Abramovic, Removal of alprazolam from aqueous solutions by heterogeneous photocatalysis: Influencing factors, intermediates, and products. Chem. Eng. J., 307 (2017) 1105–1115.
  6. U. K. Chhalotiya, N. M. Patel, D. A. Shah Falgun A. Mehta, K. K. Bhatt, Thin-layer chromatography method for the simultaneous quantification and stability testing of alprazolam and mebeverine in their combined pharmaceutical dosage form. J. Taibah. Univ. Sci., 11 (2017) 66-75.
  7. S. Akram, S. N. Ali, A. Qayoom, S. Iqbal, N. Naz, I. Memon, High Performance Liquid Chromatographic Method for Simultaneous Determination of Alprazolam with Antihistamines in Bulk Drug, Pharmaceutical Formulation and Human Serum. Sindh. Univ. Res. Jour., 49 (2017) 07-12.
  8. P. Samiec, Ľ. Švorc, D. M. Stanković, M.Vojs, M. Marton, Z. Navrátilová, Mercury-free and modification-free electroanalytical approach towards bromazepam and alprazolam sensing: A facile and efficient assay for their quantification in pharmaceuticals using boron-doped diamond electrodes. Sens. Actuat. B. Chem., 245 (2017) 963-971.
  9. M. R. Jalali Sarvestani, R. Ahmadi, Investigating the Effect of Fullerene (C20) Substitution on the Structural and Energetic Properties of Tetryl by Density Functional Theory. J. Phys. Theor. Chem. IAU. Iran., 15 (2018) 15-25.
  10. R. Ahmadi, M. R. Jalali Sarvestani, Adsorption of Tetranitrocarbazole on the Surface of Six Carbon-Based Nanostructures: A Density Functional Theory Investigation. Phys. Chem. B., 14 (2020) 198-208.
  11. R. Jalali Sarvestani, R. Ahmadi, Adsorption of TNT on the surface of pristine and N-doped carbon nanocone: A theoretical study. Asian J. Nanosci. Mater., 3 (2020) 103-114.
  12. M. R. Jalali Sarvestani, M. Gholizadeh Arashti, B. Mohasseb, Quetiapine Adsorption on the Surface of Boron Nitride Nanocage (B12N12): A Computational Study. Int. J. New. Chem., 7 (2020) 87-100.
  13. M. R. Jalali Sarvestani, R. Ahmadi, Investigating the Complexation of a recently synthesized phenothiazine with Different Metals by Density Functional Theory. Int. J. New. Chem., 4 (2017) 101-110.
  14. M. R. Jalali Sarvestani, R. Ahmadi, Adsorption of Tetryl on the Surface of B12N12: A Comprehensive DFT Study. Chem. Methodol., 4 (2020) 40-54.
  15. S. Majedi, F. Behmagham, M. Vakili, Theoretical view on interaction between boron nitride nanostructures and some drugs. J. Chem. Lett., 1 (2020) 19-24.
  16. H. G. Rauf, S. Majedi, E. A. Mahmood, M. Sofi, Adsorption behavior of the Al- and Ga-doped B12N12 nanocages on COn (n=1, 2) and HnX (n=2, 3 and X=O, N): A comparative study. Chem. Rev. Lett., 2 (2019) 140-150.
  17. R. A. Mohamed, U. Adamu, U. Sani, S. A. Gideon, A. Yakub, Thermodynamics and kinetics of 1-fluoro-2-methoxypropane vs Bromine monoxide radical (BrO): A computational view. Chem. Rev. Lett., 2 (2019) 107-117.
  18. S. Majedi, H. G. Rauf, M. Boustanbakhsh, DFT study on sensing possibility of the pristine and Al- and Ga-embeded B12N12 nanostructures toward hydrazine and hydrogen peroxide and their analogues. Chem. Rev. Lett., 2 (2019) 176-186.
  19. R. Moladoust, Sensing performance of boron nitride nanosheets to a toxic gas cyanogen chloride: Computational exploring. Chem. Rev. Lett., 2 (2019) 151-156.
  20. Nanotube Modeler J. Crystal. Soft., 2014 software.GaussView, Version 6.1, R. Dennington, T. A. Keith, J. M. Millam, Semichem Inc., Shawnee Mission, KS, 2016.
  21. Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
  22. N. M. O'Boyle, A. L. Tenderholt, K. M. Langner, A Library for Package-Independent Computational Chemistry Algorithms. J. Comp. Chem., 29 (2008) 839-845.