Fullerene (C20) as a potential sensor for thermal and electrochemical detection of amitriptyline: A DFT study

Document Type : Research Article


1 Young Researchers and Elite Club, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran

2 Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahre-Rey Branch, Islamic Azad University, Tehran, Iran


In this research, amitriptyline adsorption on the surface of fullerene C20 was studied by density functional theory computations. The calculated adsorption energies showed amitriptyline interaction with C20 is experimentally possible. The negative values of Gibbs free energy changes and great values of thermodynamic constants indicated the adsorption process is spontaneous. The negative values of adsorption enthalpy changes and the increase of specific heat capacity in the adsorption process revealed the interaction of amitriptyline with fullerene is exothermic and this nanostructure is an admissible sensing material for thermal detection of amitriptyline. The density of states (DOS) plots showed the bandgap of fullerene reduced from -32.13% from 7.145 (eV) to 4.849 (eV) when amitriptyline adsorbed on its surface. Therefore, C20 can be used as a sensor for electrochemical detection of amitriptyline. The influence of the temperature on the amitriptyline interaction with fullerene was also investigated and the results showed the adsorption process is more favorable in the lower temperatures.

Graphical Abstract

Fullerene (C20) as a potential sensor for thermal and electrochemical detection of amitriptyline: A DFT study


[1]    E. P. Medyantseva, D. V. Brusnitsyn, E. R. Gazizullina, R. M. Varlamova, H. C. Budnikov, Hybrid Nanocomposites as Electrode Modifiers in Amperometric Immunosensors for the Determination of Amitriptyline. J. Anal. Chem., 75 (2020) 360-367.
[2]    F. Farjami, F. Fasihi, M. Valibeigia, S. E. Moradi, Determination of Amitriptyline on a Carbon Nanocomposite Ionic Liquid Electrode. J. Anal. Chem., 75 (2020) 941-950.
[3]     R.M. El-Nashar, N.T. Abdel Ghani, A.A. Bioumy, Flow injection potentiometric determination of amitriptyline hydrochloride. Microchem. J., 78 (2004) 107-113.
[4]    H. Beitollahi, F. Garkani Nejad, S. Tajik, S. Jahani, P. Biparva, Voltammetric determination of amitriptyline based on graphite screen printed electrode modified with a Copper Oxide nanoparticles, Int. J. Nano. Dimens., 8 (2017) 197-205.
[5]    A. Sarafraz Yazdi, N. Razavi, S. Raouf Yazdinejad, Separation and determination of amitriptyline and nortriptyline by dispersive liquid–liquid microextraction combined with gas chromatography flame ionization detection. Talanta., 75 (2008) 1293 – 1299.
[6]    N. Rahman, S. Khan, Amitriptyline-molybdovanadate/-molybdotungstate based ion-selective membrane electrodes for determination of amitriptyline in pharmaceutical formulations and water samples. J. Electroanal. Chem., 777 (2016) 92-100.
[7]    C. K. Markopoulou, E. T. Malliou, J. E. Koundourellis, Application of two chemometric methods for the determination of imipramine, amitriptyline and perphenazine in content uniformity and drug dissolution studies. J. Pharm. Biomed. Anal., 37 (2005) 249–258.
[8]    J. P. Marco, K. B. Borges, C. R. Teixeira Tarley, E. S. Ribeiro, A. C. Pereir, Development and application of an electrochemical biosensor based on carbon paste and silica modified with niobium oxide, alumina and DNA (SiO2/Al2O3/Nb2O5/DNA) for amitriptyline determination. J. Electroanal. Chem., 704 (2013) 159-168.
[9]    M. R. Jalali Sarvestani, R. Ahmadi, Investigating the Effect of Fullerene (C20) Substitution on the Structural and Energetic Properties of Tetryl by Density Functional Theory. J. Phys. Theor. Chem. IAU. Iran., 15 (2018) 15-25.
[10]  R. Ahmadi, M. R. Jalali Sarvestani, Adsorption of Tetranitrocarbazole on the Surface of Six Carbon-Based Nanostructures: A Density Functional Theory Investigation. Phys. Chem. B., 14 (2020) 198-208.
[11]  M. R. Jalali Sarvestani, R. Ahmadi, Adsorption of TNT on the surface of pristine and N-doped carbon nanocone: A theoretical study. Asian J. Nanosci. Mater., 3 (2020) 103-114.
[12]  M. R. Jalali Sarvestani, M. Gholizadeh Arashti, B. Mohasseb, Quetiapine Adsorption on the Surface of Boron Nitride Nanocage (B12N12): A Computational Study. Int. J. New. Chem., 7 (2020) 87-100.
[13]  M. R. Jalali Sarvestani, R. Ahmadi, Investigating the Complexation of a recently synthesized phenothiazine with Different Metals by Density Functional Theory. Int. J. New. Chem., 4 (2017) 101-110.
[14]  M. R. Jalali Sarvestani, R. Ahmadi, Adsorption of Tetryl on the Surface of B12N12: A Comprehensive DFT Study. Chem. Methodol., 4 (2020) 40-54.
[15]  S. Majedi, F. Behmagham, M. Vakili, Theoretical view on interaction between boron nitride nanostructures and some drugs. J. Chem. Lett., 1 (2020) 19-24.
[16]  H. G. Rauf, S. Majedi, E. A. Mahmood, M. Sofi, Adsorption behavior of the Al- and Ga-doped B12N12 nanocages on COn (n=1, 2) and HnX (n=2, 3 and X=O, N): A comparative study. Chem. Rev. Lett., 2 (2019) 140-150.
[17]  R. A. Mohamed, U. Adamu, U. Sani, S. A. Gideon, A. Yakub, Thermodynamics and kinetics of 1-fluoro-2-methoxypropane vs Bromine monoxide radical (BrO): A computational view. Chem. Rev. Lett., 2 (2019) 107-117.
[18]  S. Majedi, H. G. Rauf, M. Boustanbakhsh, DFT study on sensing possibility of the pristine and Al- and Ga-embeded B12N12 nanostructures toward hydrazine and hydrogen peroxide and their analogues. Chem. Rev. Lett., 2 (2019) 176-186.
[19]  R. Moladoust, Sensing performance of boron nitride nanosheets to a toxic gas cyanogen chloride: Computational exploring. Chem. Rev. Lett., 2 (2019) 151-156.
[20]  Nanotube Modeler J. Crystal. Soft., 2014 software.
[21]  GaussView, Version 6.1, R. Dennington, T. A. Keith, J. M. Millam, Semichem Inc., Shawnee Mission, KS, 2016.
[22]  Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
[23]  N. M. O'Boyle, A. L. Tenderholt, K. M. Langner, A Library for Package-Independent Computational Chemistry Algorithms. J. Comp. Chem., 29 (2008) 839-845.