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1. Introduction 

      In recent years, the modeling and simulation of 

physical, chemical and biological processes has received 

much attention due to its economic importance[1]. As a 

result, these operations will save a lot of money. But for 

successful modeling and simulation, the first basic step 

is adopting appropriate methods for calculating 

thermodynamic properties[2]. So that the mismatch of 

the thermodynamic properties calculated with the 

experimental data can cause modeling inaccuracy or 

reduce the accuracy of the results of simulation. 

Therefore, care must be taken in selecting methods and 

assumptions for predicting physical and thermodynamic 

properties in modeling and simulation operations. Due 

to the widespread use of vapor-liquid equilibrium data 

in various chemical industries, they have been widely 

studied. In general, the phase behavior of dihydrogen 

monoxide has been less studied. Physcher et al., [3] 

conducted the studies under critical conditions for this 

system and for the nitrogen dioxide and ethane 

monoxide systems and compared these critical data with 

the Predictive Soave-Redlich-Kwong equation. In this 

paper, thermodynamic modeling and prediction of phase 

behavior of D-nitrogen and propane monoxide systems 

are performed using four thermodynamic models of 

Peng - Robinson, Soave - Redlich - Kwong, Lee – 

Kesler plocker and UNIQUAC. Experimental data 

equilibrium of vapor equilibrium data from Wagner et 

al., [4] data were obtained at 10 degrees centigrade. 

 

2. Thermodynamic Model  
The polynomial equations, in which the molar volume is 

of the third degree, have a good relationship between 

simplicity and generalization, which is suitable for many 

purposes. In fact, third-degree equations are the simplest 

equations that can express liquid and vapor behavior [5-

8]. Among the third-order mode equations, the Redlich 

Kwong mode equation will have three strands for 

volume, between which the two answers may be 

complex. Relation 1 shows the standard form of the RK 

mode equation. This equation provides very convincing 
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results for calculating vapor-liquid equations. The two 

SRK and PR equations are derived from the RK mode 

equation, and have been developed specifically to 

perform vapor-liquid equilibrium calculations. 
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a and b are the stability of the equation that depend on 

the critical properties of the system components [9-14]. 

 

3. PR equation 

This equation is one of the most widely used models in 

simulating chemical processes, especially oil, gas and 

petrochemicals which is used to perform calculations of 

vapor-liquid equilibrium and the density of hydrocarbon 

materials. Numerous studies on the primary PR model 

have shown that the current model can be used for a 

relatively wide range of single, two and three-phase 

systems. This equation has several features, including 

the following [6]: 

 

1. It expresses the parameters based on the critical 

properties and the decentralization coefficient. 

2. It can be used for all calculations, including fluid 

properties in natural gas processes. 

3. For the law of mixing, no more than one parameter of 

binary interaction should be used and it should be 

independent of temperature, pressure and composition. 

4. The performance results of the model in the vicinity 

of critical points, especially the calculation of ZC and 

fluid density must be corrected. 

Relation 2 shows the PR equation. (Details of this model 

are given in Table 1). 
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3.1. SRK equation 

In many cases, the results of this equation can be 

compared with the results of the PR equation but often 

the range proposed for using this equation is more 

limited [6]. Relation 3 shows the general form of this 

equation. 
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The general equation, theory and scope of application of 

UNIQUAC and LKP models are described in references 

[6, 7]. 

 

Numerical solution method 

In the bubble point pressure calculations of mixture, the 

following relations is established: 
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To solve the equation (5), the Newton-Raffson method 

[15-21] should be used as a guess and deviation.    
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3.2. Thermodynamic modeling of vapor-liquid 

equilibrium 

In this paper, the aim of thermodynamic modeling was 

to predict the phase behavior of the di-nitrogen 

monoxide (1) and propane (2) binary systems using 4 

models: PR, SRK, LKP and UNIQUAC. The procedure 

is as follows: In each relative compound, the di-nitrogen 

monoxide component in the liquid phase (X1), the 

bubble point (P) and its relative composition in the 

vapor phase (Y1) are obtained using the mentioned 

models and then compared with the data. Empirically, 

the difference for each data from Equation 8 was 

calculated. The average absolute deviation rate was then 

calculated using Equation 9 and the maximum deviation 

value for each thermodynamic model. Finally, the model 

with the lowest absolute average deviation rate was 

selected as the most appropriate thermodynamic model 

for system design and simulation calculations. It should 

be noted that the simulation of experimental data and all 

calculations was done with the help of software[22-28]. 

 

Diff (Error) = Experimental value - Computational value   (8) 

 

Mean absolute error =


n

Diff

                                  (9) 

     

 

Table 1 shows the phase equilibrium laboratory data (P-

xy) of the di-nitrogen monoxide (1) and propane (2) 

systems obtained by Wagner et al. [4] at 10 degrees 

centigrade. 
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Table 1. Experimental data of di-nitrogen and propane 

monoxide system [4] 

1Y 1X P (kPa) 
0 0 638.5 

0.3068 0.0699 906.1 
0.4978 0.155 1208.4 
0.5649 0.2016 1386 
0.6383 0.2687 1621 
0.6964 0.3401 1864.6 
0.7774 0.4751 2312.3 
0.7972 0.5136 2458.2 
0.8269 0.585 2671.2 
0.8312 0.5954 2709.7 
0.8687 0.689 3003.1 
0.8767 0.7082 3082.8 
0.9179 0.8153 3405.3 
0.9466 0.883 3637.1 
0.9761 0.9502 3864.7 
0.9934 0.9869 3996.9 

1 1 4041.3 
 

4. Results 
Due to the length of the calculations, it is enough to 

mention the results obtained for the PR model in the 

form of Table 2. 

 
Table 2. Results from modeling with PR equation of state 

Error in calculating 

the mole fraction of 

di nitrogen 

monoxide in the 

vapor phase 

 

(Diff Y) 

Error in bubble 

point 

calculation 

 

(Diff P) 

Mole fraction of 

dihydrogen 

monoxide in the 

liquid phase 

(1X) 

0 2.19 0 
-0.009 -4.29 0.0699 

-0.0057 5.04 0.155 
-0.0038 -5.03 0.2016 
-0.0014 -2.84 0.2687 

0.001 0.67 0.3401 
0.0023 6.07 0.4751 

0.00078 -13.59 0.5136 
0.0031 4.72 0.585 
0.0035 -0.29 0.5954 
0.0025 6.44 0.689 
0.0015 -11.73 0.7082 

0.00126 12.16 0.8153 
0.00056 4.07 0.883 
-0.00069 4.27 0.9502 
-0.00017 -0.78 0.9869 

0 0.47 1 
0.002338 4.98 Mean absolute error 

0.009 13.59 Maximum error 
 

In Table 3, the mean absolute error values of the different 

models are compared. 

 
Table 3. The Mean absolute error of different models 

Mole fraction of di-nitrogen 

monoxide in the vapor phase  

(1Y) 

Bubble point  
(P) 

Model 

0.002338 4.98 PR 

0.00709 121.31 SRK 
0.00354 45.69 LKP 
0.0573 111.43 UNIQUAC 

 

According to the results obtained from Table 3, it can be 

seen that the thermodynamic PR model due to having 

the lowest mean absolute error in predicting the bubble 

point (P) which is equal to 4.98 and except for the molar 

equilibrium of di-nitrogen monoxide in the vapor phase 

(Y1) which is equal to 0.002338, the most suitable 

thermodynamic model for predicting vapor equilibrium 

behavior is the fluid of this system. Figures 1, 2, 3 and 4 

graphically compare the experimental data (P-xy) with 

the results obtained from different thermodynamic 

models. 

 
Figure 1. Comparison of experimental data with the results obtained from the PR  
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Figure 2. Comparison of experimental data with the results obtained from the SRK  

 

 

 

 

 
Figure 3. Comparison of experimental data with the results obtained from the LKP  
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Figure 4. Comparison of experimental data with the results obtained from the UNIQUAC  

 

A graphical comparison between experimental data and 

the computational results obtained from different 

models confirms the results of Table 4. As shown in the 

diagrams, the thermodynamic PR model (Figure 1) is 

better able to cover experimental data than other models 

(with the least deviation). However, the use of the 

UNIQUAC model for predicting the liquid phase and 

considering the ideal mode for the gas phase (Figure 4) 

has the greatest deviation and non-compliance of 

experimental data with computational data and is the 

weakest model among the studied models for predicting 

phase behavior of di-nitrogen monoxide and propane 

system. 

 

5. Conclusion 

In this study, the phase behavior of the di-nitrogen 

monoxide and propane systems has been modeled by 4 

thermodynamic models PR, SRK, LKP and UNIQUAC. 

Calculating the mean absolute error in predicting the 

bubble point (P) and molar fraction other than the di-

nitrogen monoxide in the vapor phase (Y1) shows that 

the PR equation has the lowest mean absolute error, 

therefore, the best model for predicting the phase 

behavior of this system (among the models studied). 

Also, using the UNIQUAC model to predict the liquid 

phase and considering the ideal mode for predicting the 

gas phase can in no way accurately predict the system's 

equilibrium behavior and it has the highest mean absolute 

error among the models. In addition, the graphical 

comparison of the computational results by modeling 

with the experimental equilibrium data (P-xy) of 

Wagner et al. confirms these results. In general, 

differences in computational results with experimental 

data in predicting the phase behavior of a system can be 

combined due to the complex nature of the molecules 

and the mixing relations used to determine the 

molecular interaction. 
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