Existing drugs as treatment options for COVID-19: A brief survey of some recent results

Document Type : Review article


1 College of Health Sciences, University of Human Development, Sulaimaniyah, Kurdistan region of Iraq

2 Department of Chemistry, Payame Noor University, Tehran, Iran.


The novel coronavirus, namely SARS-CoV-2, emerged from central China in December 2019 and then spread rapidly worldwide. It has infected hundreds of thousands of people and killed several thousand thus far. The illness caused by this coronavirus is called COVID-19 and has been declared a global emergency by the World Health Organization (WHO) on January 30, 2020. Although a series of existing drugs have shown some promise in treating COVID-19, there is currently no approved medication that treat this disease. In this focus-review, we aim to summarize the available literature on the potential usefulness of existing drugs against COVID-19.

Graphical Abstract

Existing drugs as treatment options for COVID-19: A brief survey of some recent results


  1. P.S. Masters, The molecular biology of coronaviruses, Adv. Virus Res., 66 (2006) 193-292.
  2. B.S. Chhikara, B. Rathi, J. Singh, F. Poonam, Corona virus SARS-CoV-2 disease COVID-19: Infection, prevention and clinical advances of the prospective chemical drug therapeutics, Chem. Biol. Lett., 7(1) (2020) 63-72.
  3. M. Cascella, M. Rajnik, A. Cuomo, S.C. Dulebohn, R. Di Napoli, Features, evaluation and treatment coronavirus (COVID-19), StatPearls (2020).
  4. H.A. Rothan, S.N. Byrareddy, The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak, J. Autoimmun., (2020) 102433 and references therin.
  5. S.C.Y. Wong, R.T.S. Kwong, T.C. Wu, J.WM. Chan, M.Y. Chu, S.Y. Lee, H.Y. Wong, D.C. Lung, Risk of nosocomial transmission of coronavirus disease 2019: an experience in a general ward setting in Hong Kong, Journal of Hospital Infection, (2020) Doi.org/10.1016/j.jhin.2020.03.036.
  6. https://www.ft.com/coronavirus-latest
  7. E. Qing, T. Gallagher, SARS coronavirus redux, Trends Immunol., (2020) DOI: 10.1016/j.it.2020.02.007.
  8. T.K. Warren, R. Jordan, M.K. Lo, A.S. Ray, R.L. Mackman, V. Soloveva, D. Siegel, M. Perron, R. Bannister, H.C. Hui, Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys, Nature, 531 (2016) 381-385.
  9. M.K. Lo, R. Jordan, A. Arvey, J. Sudhamsu, P. Shrivastava-Ranjan, A.L. Hotard, M. Flint, L.K. McMullan, D. Siegel, M.O. Clarke, GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses, Sci. Rep., 7 (2017) 43395; (b) T.P. Sheahan, A.C. Sims, R.L. Graham, V.D. Menachery, L.E. Gralinski, J.B. Case, S.R. Leist, K. Pyrc, J.Y. Feng, I. Trantcheva, broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses, Sci. Transl. Med., 9 (2017) DOI: 10.1126/scitranslmed.aal3653.
  10. E.P. Tchesnokov, J.Y. Feng, D.P. Porter, M. Götte, Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir, Viruses, 11 (2019) 326.
  11. M. Wang, R. Cao, L. Zhang, X. Yang, J. Liu, M. Xu, Z. Shi, Z. Hu, W. Zhong, G. Xiao, Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res., 30 (2020) 269-271.
  12. M.L. Holshue, C. DeBolt, S. Lindquist, K.H. Lofy, J. Wiesman, H. Bruce, C. Spitters, K. Ericson, S. Wilkerson, A. Tural, First case of 2019 novel coronavirus in the United States, N. Engl. J. Med., 382 (2020) 929-936.
  13. G. Li, E. De Clercq, Therapeutic options for the 2019 novel coronavirus (2019-nCoV), Nat. Rev. Drug Discov., 19 (2020) 149-150.
  14. C. Homewood, D. Warhurst, W. Peters, V. Baggaley, Lysosomes, pH and the anti-malarial action of chloroquine, Nature, 235 (1972) 50-52.
  15. N.J. Conan Jr, Chloroquine in amebiasis, Am. J. Trop. Med. Hyg., 1 (1948) 107-110.
  16. J. Gao, Z. Tian, X. Yang, Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies, Biosci. Trends, (2020) DOI: 10.5582/bst.2020.01047.
  17. https://www.theguardian.com/world/2020/mar/27/vital-drug-people-lupus-coronavirus-covid-19-link-hydroxychloroquine
  18. I. Ben-Zvi, S. Kivity, P. Langevitz, Y. Shoenfeld, Hydroxychloroquine: from malaria to autoimmunity, Clin. Rev. Allergy Immunol., 42 (2012) 145-153.
  19. X. Yao, F. Ye, M. Zhang, C. Cui, B. Huang, P. Niu, X. Liu, L. Zhao, E. Dong, C. Song, In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Clin. Infect. Dis., (2020) DOI: 10.1093/cid/ciaa237.
  20. Z. Sahraei, M. Shabani, S. Shokouhi, A. Saffaei, Aminoquinolines against coronavirus disease 2019 (COVID-19): Chloroquine or Hydroxychloroquine, Int. J. Antimicrob. Agents, (2020) DOI: 10.1016/j.ijantimicag.2020.105945.
  21. P. Colson, J.-M. Rolain, J.-C. Lagier, P. Brouqui, D. Raoult, Chloroquine and hydroxychloroquine as available weapons to fight COVID-19, Int. J. Antimicrob. Agents, 105932 (2020) DOI: 10.1016/j.ijantimicag.2020.105932.
  22. P. Gautret, J.-C. Lagier, P. Parola, L. Meddeb, M. Mailhe, B. Doudier, J. Courjon, V. Giordanengo, V.E. Vieira, H.T. Dupont, Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial, Int. J. Antimicrob. Agents, (2020) DOI: 10.1016/j.ijantimicag.2020.105949.
  23. (a) Y. Furuta, K. Takahashi, K. Shiraki, K. Sakamoto, D.F. Smee, D.L. Barnard, B.B. Gowen, J.G. Julander, J.D. Morrey, T-705 (favipiravir) and related compounds: Novel broad-spectrum inhibitors of RNA viral infections, Antiviral Res. 82 (2009) 95-102; (b) L. Delang, R. Abdelnabi, J. Neyts, Favipiravir as a potential countermeasure against neglected and emerging RNA viruses, Antiviral Res., 153 (2018) 85-94.
  24. L. Dong, S. Hu, J. Gao, Discovering drugs to treat coronavirus disease 2019 (COVID-19), Drug Discov Ther., 14 (2020) 58-60.
  25. R. Abdelnabi, A.T.S. de Morais, P. Leyssen, I. Imbert, S. Beaucourt, H. Blanc, M. Froeyen, M. Vignuzzi, B. Canard, J. Neyts, Understanding the mechanism of the broad-spectrum antiviral activity of favipiravir (T-705): key role of the F1 motif of the viral polymerase, J. Virol., 91 (2017) e00487-17.
  26. Q. Cai, M. Yang, D. Liu, J. Chen, D. Shu, J. Xia, X. Liao, Y. Gu, Q. Cai, Y. Yang, Experimental treatment with favipiravir for COVID-19: An open-label control study, Engineering, (2020) DOI: 10.1016/j.eng.2020.03.007.
  27. https://www.theguardian.com/world/2020/mar/18/japanese-flu-drug-clearly-effective-in-treating-coronavirus-says-china
  28. C. Chen, J. Huang, Z. Cheng, J. Wu, S. Chen, Y. Zhang, B. Chen, M. Lu, Y. Luo, J. Zhang, Favipiravir versus arbidol for COVID-19: A randomized clinical trial, medRxiv, (2020) DOI: 10.1101/2020.03.17.20037432.
  29. M. Carmen de, M.-C. Luz, B. Pablo, D. Beatriz, V. Eulalia, J.-N. Inmaculada, G. Oscar, N. Marina, G.-L. Juan, S. Vincent, Salvage treatment with lopinavir/ritonavir (Kaletra) in HIV-infected patients failing all current antiretroviral drug families, HIV Clin. Trials., 3 (2002) 304-309.
  30. J. Lim, S. Jeon, H.-Y. Shin, M.J. Kim, Y.M. Seong, W.J. Lee, K.-W. Choe, Y.M. Kang, B. Lee, S.-J. Park, Case of the index patient who caused tertiary transmission of COVID-19 infection in Korea: the application of lopinavir/ritonavir for the treatment of COVID-19 infected pneumonia monitored by quantitative RT-PCR, J. Korean Med. Sci., 35(6) (2020) DOI: 10.3346/jkms.2020.35.e79.
  31. B. Cao, Y. Wang, D. Wen, W. Liu, J. Wang, G. Fan, L. Ruan, B. Song, Y. Cai, M. Wei, A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19, N. Engl. J. Med., (2020) DOI: 10.1056/NEJMoa2001282.
  32. V. Oldfield, S. Dhillon, G.L. Plosker, Tocilizumab, Drugs, 69 (2009) 609-632.
  33. Z. Ye, Y. Zhang, Y. Wang, Z. Huang, B. Song, Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review, Eur. Radiol., (2020) DOI: 10.1007/s00330-020-06801-0.
  34. https://clinicaltrials.gov/ct2/show/NCT04317092?cond=covid+19&draw=2
  35. D. Murdoch, K.A. Lyseng-Williamson, Spotlight on subcutaneous recombinant interferon-β-1a (Rebif®) in relapsing-remitting multiple sclerosis, BioDrugs, 19(5) (2005) 323-325.
  36. C. Boxall, S. Dudley, R. Beegan, V. Tear, S. Hrebien, K. Lunn, P. Monk, Effect of inhaled sng001 (interferon-beta 1a) on sputum and blood antiviral biomarkers following a respiratory virus infection in asthmatic subjects, Eur. Respir. J., 42 (2013) P4369.
  37. https://pharmafield.co.uk/pharma_news/synairgen-to-start-trial-of-sng001-in-covid-19/
  38. https://clinicaltrials.gov/ct2/show/NCT04315948?term=interferonbeta+1a&cond=covid&draw=2&rank=1
  39. S.K. Wong, W. Li, M.J. Moore, H. Choe, M. Farzan, A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2, J. Biol. Chem., 279 (2004) 3197-3201.
  40. C.J. Tignaneli, N.E. Ingraham, M.A. Sparks, R. Reilkoff, T. Bezdicek, B. Benson, T. Schacker, J.G. Chipman, M.A. Puskarich, Antihypertensive drugs and risk of COVID-19?, Lancet Respir. Med., (2020) DOI: 10.1016/S2213-2600(20)30153-3.
  41. H. Zhang, J.M. Penninger, Y. Li, N. Zhong, A.S. Slutsky, Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target, Intensive Care Med., 46 (2020) 586–590.
  42. L. Fang, G. Karakiulakis, M. Roth, Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection?, Lancet Respir. Med., (2020).
  43. A Loczechin, K Séron, A Barras, E Giovanelli, S. Belouzard, Y.T. Chen, N.M. Nolte, R. Boukherroub, J. Dubuisson, S. Szunerits, Functional Carbon Quantum Dots as Medical Countermeasures to Human Coronavirus, ACS Appl. Mater. Interfaces 11 (2019) 42964-42974.
  44. V. Monteil, H. Kwon, P. Prado, A. Hagelkrüys, R.A. Wimmer, M. Stahl, A. Leopoldi, E. Garreta, C.H. del Pozo, F. Prosper, J.P. Romero, G. Wirnsberger, H. Zhang, A.S. Slutsky, R. Conder, N. Montserrat, A. Mirazimi, J.M. Penninger, Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2, CellPress (2020) DOI: 10.1016/j.cell.2020.04.004.