Oxidative Lactamization of Amino Alcohols: An Overview

Document Type : Review article


1 Department of Chemistry, Qatar University, Qatar

2 Payame Noor University, Tehran, Iran

3 Miandoab Branch , Islamic Azad University, Miandoab, Iran


Lactams are essential functional groups in a number of pharmacologically and biologically active compounds. They are widely found in many natural products, marketed drugs, as well as in the base of polymeric structures (e.g., polyamides/Nylons). In this context, it is quite important to develop novel and efficient methods for the synthesis of these compounds. Recently, intramolecular dehydrogenative coupling reactions of amino alcohols, which generate only hydrogen as a side product, have emerged as one of the most versatile and powerful synthetic strategies to construct lactam rings. In the present review we will discuss recent advances on this chemistry with the emphasis on the mechanistic aspects of the reactions.

Graphical Abstract

Oxidative Lactamization of Amino Alcohols: An Overview


[1] T. Janecki, Natural Lactones and Lactams: Synthesis, occurrence and biological activity, John Wiley & Sons (2013).
[2] (a) M. Carlier, V. Stove, S.C. Wallis, J.J. De Waele, A.G. Verstraete, J. Lipman, J.A. Roberts, Assays for therapeutic drug monitoring of β-lactam antibiotics: a structured review, International journal of antimicrobial agents 46 (2015) 367-375; (b) J. Caruano, G. Muccioli, R. Robiette, Biologically active γ-lactams: synthesis and natural sources, Org. Biomol. Chem., 14 (2016) 10134-10156.
[3] (a) K. Hashimoto, Ring-opening polymerization of lactams. Living anionic polymerization and its applications, Prog. Polym. Sci., 25 (2000) 1411-1462; (b) O. Nuyken, S.D. Pask, Ring-opening polymerization—An introductory review, Polymers, 5 (2013) 361-403.
[4] (a) H.M.A. Hassan, Recent applications of ring-closing metathesis in the synthesis of lactams and macrolactams, Chem. Commun., 46 (2010) 9100-9106; (b) A. Albrecht, Ł. Albrecht, T. Janecki, Recent advances in the synthesis of α‐alkylidene‐substituted δ‐lactones, γ‐lactams and δ‐lactams, Eur. J. Org. Chem., (2011) 2747-2766; (c) L.-W. Ye, C. Shu, F. Gagosz, Recent progress towards transition metal-catalyzed synthesis of γ-lactams, Org. Biomol. Chem., 12 (2014) 1833-1845.
[5] (a) J. Wang, P. Su, S. Abdolmohammadi, E. Vessally, A walk around the application of nanocatalysts for cross-dehydrogenative coupling of C–H bonds, RSC Adv., 9 (2019) 41684-41702; (b) S. Ebrahimiasl, F. Behmagham, S. Abdolmohammadi, R.N. Kojabad, E. Vessally, Recent advances in the application of nanometal catalysts for Glaser coupling, Curr. Org. Chem. 23 (2019) 2489-2503.
[6] (a) A. Hosseinian, S. Ahmadi, F.A.H. Nasab, R. Mohammadi, E. Vessally, Cross-dehydrogenative C–H/S–H coupling reactions, Top. Curr. Chem., 376 (2018) 39; (b) W. Peng, E. Vessally, S. Arshadi, A. Monfared, A. Hosseinian, L. Edjlali, Cross-dehydrogenative coupling reactions between C (sp)–H and X–H (X= N, P, S, Si, Sn) bonds: An environmentally benign access to heteroatom-substituted alkynes, Top. Curr. Chem., 377(4) (2019) 20; (c) S. Arshadi, A. Banaei, A. Monfared, S. Ebrahimiasl, A. Hosseinian, Cross-dehydrogenative coupling reactions between arenes (C–H) and carboxylic acids (O–H): a straightforward and environmentally benign access to O-aryl esters, RSC Adv., 9 (2019) 17101-17118; (d) J. Chen, F.R. Sheykhahmad, Intramolecular cross‐dehydrogenative coupling of benzaldehyde derivatives: A novel and efficient route to benzocyclic ketones, J. Chin. Chem. Soc.,  (2019) DOI: 10.1002/jccs.201900214; (e) Y. Yang, D. Zhang, E. Vessally, Direct amination of aromatic C-H bonds with free amines, Top. Curr. Chem., 378 (2020) 37-37.
[7] (a) A. Hosseinian, S. Farshbaf, L.Z. Fekri, M. Nikpassand, E. Vessally, Cross-dehydrogenative coupling reactions between P(O)–H and X–H (X= S, N, O, P) bonds, Top. Curr. Chem., 376(3) (2018) 23; (b) F.A.H. Nasab, L.Z. Fekri, A. Monfared, A. Hosseinian, E. Vessally, Recent advances in sulfur–nitrogen bond formation via cross-dehydrogenative coupling reactions, RSC Adv., 8 (2018) 18456-18469.
[8] E. Vessally, M. Babazadeh, A. Hosseinian, L. Edjlali, L. Sreerama, Recent advances in synthesis of functionalized β-lactams through cyclization of N-propargyl amine/amide derivatives, Curr. Org. Chem. 22 (2018) 199-205.
[9] S. Soleimani-Amiri, E. Vessally, M. Babazadeh, A. Hosseinian, L. Edjlali, Intramolecular cyclization of N-allyl propiolamides: a facile synthetic route to highly substituted γ-lactams (a review), RSC Adv., 7 (2017) 28407-28418.
[10] (a) A. Hosseinian, F.A.H. Nasab, S. Ahmadi, Z. Rahmani, E. Vessally, Decarboxylative cross-coupling reactions for P(O)–C bond formation, RSC Adv., 8 (2018) 26383-26398; (b) S. Arshadi, S. Ebrahimiasl, A. Hosseinian, A. Monfared, E. Vessally, Recent developments in decarboxylative cross-coupling reactions between carboxylic acids and N–H compounds, RSC Adv., 9 (2019) 8964-8976; (c) Y. Liu, A.G. Ebadi, L. Youseftabar-Miri, A. Hassanpour, E. Vessally, Methods for direct C (sp 2)–H bonds azidation, RSC Adv., 9 (2019) 25199-25215; (d) C. Yang, A. Hassanpour, K. Ghorbanpour, S. Abdolmohammadi, E. Vessally, Recent advances in direct trifluoromethylation of olefinic C–H bonds, RSC Adv., 9 (2019) 27625-27639.
[11] T. Naota, S.-I. Murahashi, Ruthenium-catalyzed transformations of amino alcohols to lactams, Synlett, (1991) 693-694.
[12] L.U. Nordstrøm, H. Vogt, R. Madsen, Amide synthesis from alcohols and amines by the extrusion of dihydrogen, J. Am. Chem. Soc., 130 (2008) 17672-17673.
[13] S.C. Ghosh, S.H. Hong, Simple RuCl3‐catalyzed amide synthesis from alcohols and amines, Eur. J. Org. Chem., (2010) 4266-4270.
[14] B. Saha, G. Sengupta, A. Sarbajna, I. Dutta, J.K. Bera, Amide synthesis from alcohols and amines catalyzed by a RuII–N-heterocyclic carbene (NHC)–carbonyl complex, J. Organomet. Chem., 771 (2014) 124-130.
[15] S.C. Ghosh, S. Muthaiah, Y. Zhang, X. Xu, S.H. Hong, Direct amide synthesis from alcohols and amines by phosphine‐free ruthenium catalyst systems, Adv. Synth. Catal., 351(16) (2009) 2643-2649.
[16] S. Muthaiah, S.C. Ghosh, J.-E. Jee, C. Chen, J. Zhang, S.H. Hong, Direct amide synthesis from either alcohols or aldehydes with amines: activity of Ru (II) hydride and Ru (0) complexes, J. Org. Chem., 75 (2010) 3002-3006.
[17] C. Chen, Y. Zhang, S.H. Hong, N-heterocyclic carbene based ruthenium-catalyzed direct amide synthesis from alcohols and secondary amines: Involvement of esters, J. Org. Chem., 76 (2011) 10005-10010.
[18] J.H. Dam, G. Osztrovszky, L.U. Nordstrøm, R. Madsen, Amide synthesis from alcohols and amines catalyzed by ruthenium N‐heterocyclic carbene complexes, Chem. Eur. J., 16 (2010) 6820-6827.
[19] Y. Zhang, C. Chen, S.C. Ghosh, Y. Li, S.H. Hong, Well-defined N-heterocyclic carbene based ruthenium catalysts for direct amide synthesis from alcohols and amines, Organometallics, 29 (2010) 1374-1378.
[20] B.P. Babu, Y. Endo, J.E. Bäckvall, Biomimetic aerobic oxidation of amino alcohols to lactams, Chem. Eur. J., 18 (2012) 11524-11527.
[21] D. Pingen, D. Vogt, Amino-alcohol cyclization: selective synthesis of lactams and cyclic amines from amino-alcohols, Catal. Sci. Technol., 4 (2014) 47-52.
[22] K.-i. Fujita, Y. Takahashi, M. Owaki, K. Yamamoto, R. Yamaguchi, Synthesis of five-, six-, and seven-membered ring lactams by Cp*Rh complex-catalyzed oxidative N-heterocyclization of amino alcohols, Org. Lett., 6 (2004) 2785-2788.
[23] Y. Wang, D. Zhu, L. Tang, S. Wang, Z. Wang, Highly efficient amide synthesis from alcohols and amines by virtue of a water‐soluble gold/DNA catalyst, Angew Chem. Int. Ed. Engl., 50 (2011) 8917-8921.
[24] J-F. Soulé, H. Miyamura, S. Kobayashi, Powerful amide synthesis from alcohols and amines under aerobic conditions catalyzed by gold or gold/iron, -nickel or –cobalt nanoparticles, J. Am. Chem. Soc. 133 (2011) 18550–18553.
[25] J. Zhu, Y. Zhang, F. Shi, Y. Deng, Dehydrogenative amide synthesis from alcohol and amine catalyzed by hydrotalcite-supported gold nanoparticles, Tetrahedron Lett., 53 (2012) 3178–3180.
[26] S. Kegnæs, J. Mielby, U. V. Mentzel, T. Jensen, P. Fristrup, A. Riisager, One-pot synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines using supported gold and base as catalysts, Chem. Commun., 48 (2012) 2427–2429.
[27] J-F. Soulé, H. Miyamura, S. Kobayashi, Selective lactam formation from amino alcohols using polymerIncarcerated gold and gold/cobalt nanoparticles as catalysts under aerobic oxidative conditions, Asian J. Org. Chem., 1 (2012) 319–321.
[28] M. Peña-López, H. Neumann, M. Beller, Iron(II) pincer-catalyzed synthesis of lactones and lactams through a versatile dehydrogenative domino sequence, ChemCatChem., 7 (2015) 865-871.
[29] S. Herter, S.M. McKenna, A.R. Frazer, S. Leimkìhler, A.J. Carnell, N.J. Turner, Galactose oxidase variants for the oxidation of amino alcohols in enzyme cascade synthesis, ChemCatChe., 7 (2015) 2313 –2317.
[30] L. Huang, G.V. Sayoga, F. Hollmann, S. Kara, Horse liver alcohol dehydrogenase-catalyzed oxidative lactamization of amino alcohols, ACS Catal., 8 (2018) 8680-8684.