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1. Introduction 

      The bulk modulus is a scalar quantity relating an 

isotropic pressure to an average change in volume. It is 

the average of the three inverse linear compressibilities 
(change of length induced by pressure). The bulk 

modulus is defined as: 

TT

p

V

p
B 
































1

                                  (1)                                                                                               

Huang and O’Connell [1] discovered a regularity in 

which all isotherms of the reduced bulk modulus of a 

compressed liquid as a function of density intersect at a 

common point called _common bulk modulus point’. The 

reduced bulk modulus is defined as: 
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where Br is the reduced bulk modulus and R is the gas 

constant. Huang and O’Connell checked the regularity 

for more than 250 fluids and used it as the basis of a 

correlation scheme for the volumetric properties of 

compressed liquids and liquid mixtures. Boushehri et al. 

[2] presented a theoretical basis for this regularity in 

terms of a statistical–mechanical equation of state [3]. 
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The linearity of bulk modulus as a function of pressure: 

More than 100 years ago, a regularity has been 

discovered by Tait [4] in which isotherms of bulk 

modulus (reciprocal isothermal compressibility), 

 
T

p  1
 , of a liquid as a function of pressure 

vary linearly [5-8]. 

      A new scale for measuring the overall elastic stiffness 

of these compounds is introduced and its correlation with 

the calculated bulk modulus and lattice constants is 

analyzed. The overall elastic stiffness is calculated and 

found to be directly proportional to bulk modulus and 

inversely proportional to lattice constants. bulk modulus 

has been found to correlate well with strength and 

hardness in many materials and those with largest the 

bulk moduli are usually expected to be the hardest 

materials [9]. Therefore, one of the important parameters 

that characterize the physical property of a material 

system is the material stiffness and its corresponding bulk 

modulus which measures the degree of stiffness or the 

energy required to produce a given volume deformation. 

The bulk modulus reflects important bonding characters 

in the material and, for many applications, is used as an 

indicator for material strength and hardness. Early 
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experimental and theoretical investigations for bulk 

modulus were reported in [10,11]. Cohen [10] obtained 

an empirical expression for the bulk modulus based on 

the nearest-neighbor distance. His theoretical and 

experimental results were in agreement. Lam et al. [11] 

obtained an expression for bulk modulus using the total 

energy method with acceptable results. The bulk modulus 

for the semiconductor compounds was found to be 

inverse proportionally correlated to the lattice constants 

[11,12]. The overall elastic stiffness of II-IV 

semiconductor compounds CdS, CdSe, and CdTe is 

calculated and found to be directly proportional to bulk 

modulus and inversely proportional to lattice constants. 

Among these compounds, CdS has the largest overall 

elastic stiffness and bulk modulus and the smallest lattice 

constant. Meanwhile, CdTe has the smallest overall 

elastic stiffness and bulk modulus and the largest lattice 

constant [13]. 

      The effects of bulk modulus nonlinearity on the 

performance of a hydrostatic transmission control system 

have been analyzed through system modeling and 

simulation. This study has demonstrated that omitting the 

bulk modulus dynamics in hydrostatic transmission 

control systems may lead to major errors in system 

response and have implications on the safety of operation. 

Therefore, bulk modulus should be considered as a 

variable parameter to obtain a more realistic overall 

model and to determine more accurate control parameters 

in PID controller. Analysis including bulk modulus 

dynamics in an HST-control system model with this 

control design feature has not been described in the 

literature to date. Therefore, it may be useful for the early 

design of an HST system used for PID control 

application. In addition, it is clearly seen that a fuzzy 

controller has the capability of eliminating the adverse 

effects of variable bulk modulus. This will also benefit 

the control design process in terms of developing a robust 

controller. For future research, model development will 

be expanded to include swashplate dynamics, valve 

dynamics and more complex flow and torque models of 

the pump and the motor. Furthermore, an adaptive control 

method will be applied for changeable velocity reference 

and load moment [14]. A general regularity was reported 

for pure dense fluids, namely testing literature results for 

p–v–T for pure dense fluids, according to which 

  21 VZ   is linear with respect to 
2 for each isotherm, 

where RTpVZ  is the compression factor [15]. This 

equation of state works very well for all types of dense 

fluids, for densities greater than the Boyle density but for 

temperatures below twice the Boyle temperature. The 

regularity was originally suggested on the basis of a 

simple lattice-type model applied to a Lennard-Jones (12, 

6) fluid. We shall refer to this equation of state as the 

‘linear isotherm regularity’, or simply LIR from now on. 

The LIR is used to investigate some empirically known 

regularities [16, 17]. 

      In the present work, LIR has been used to calculate 

the bulk modulus. The purpose of this paper is to point 

out an expression for the bulk modulus of dense fluids 

using LIR. In this paper, in section 1, we present a simple 

method that keeps the first-order temperature dependence 

of parameters in LIR versus inverse temperature. Then, 

the bulk modulus is calculated from LIR. In section 2, the 

temperature dependence of the parameters in LIR has 

been developed to second order. In section 3, the 

temperature dependence of parameters in LIR has been 

developed to third order and then the bulk modulus is 

calculated by LIR in each state. 

 

2. Theory 

      Liquids and dense fluids are usually considered to be 

complicated on a molecular scale; they show a number of 

simple regularities [18]. The first is the Tait–Murnaghan 

relation, in which the bulk modulus (reciprocal 

compressibility) of a liquid (or solid) is linear in pressure 

[7]. The second is the linear relation between the 

temperature and density at unit compression factor [19], 

which was discovered empirically in 1906. The third is 

the common bulk modulus point, in which all liquid 

isotherms of the reduced bulk modulus as a function of 

molar volume intersect at essentially a single point. The 

fourth is the linear isotherm for dense fluids [20], for 

which we attempt to calculate the internal pressure by 

modeling the average configurational potential energy 

and then take its derivative with respect to volume. This 

assumes that any kinetic energy contribution to the 

internal energy will vanish on taking the derivative, since 

the temperature is held constant. It also approximates the 

average potential energy by summing the contribution 

from nearest neighbors only, and assuming that the 

average number of nearest neighbors is proportional to 

the density, as is the case for liquid argon, rubidium, and 

cesium [21]. Combining the foregoing results, a general 

regularity that was reported for pure dense fluids, 

according to which   21 VZ  is linear with respect to 
2

, each isotherm is, 

  2 21Z V A B                                                (3)                                                                                                                                  

where RTpVZ  is the compression factor, V1  

is the molar density, and A and B are the temperature-

dependent parameters. It is shown that this regularity is 

compatible with equations of state based on statistical– 

mechanical theory [22]. The model thus not only mimics 

the linearity of   21 VZ  versus 
2  but also predicts the 

temperature dependence intercept and slope. This result 

immediately shows why A has much similarities to the 

second virial coefficient. It has the same temperature 

dependence as that of a van der Waals gas, which usually 

gives a fair representation of the temperature dependence 

for real gases in the vicinity of the Boyle temperature 

[21]. The compression factor of the system can be given 

by using the LIR: 
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Therefore, the compression factor RTpVZ  versus 

2  becomes quadratic for each isotherm. Using the 

experimental data, the temperature dependence of the 

parameters will be tested in the following sections. 

 

2.1. First-order temperature dependence of parameters 

We first derive the pressure by applying LIR, and then 

use the first-order temperature dependence of the 

parameters to get  the final 
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for the dense fluid, where 
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Here 1A  and 1B  are related to the intermolecular 

attractive and repulsive forces, respectively, while 
2A  is 

related to the nonideal thermal pressure and RT has its 

usual meaning. In the present work, the starting point in 

the derivation is equation (4). By substitution of 

equations (5) and (6) in equation (4), the pressure can be 

given by using the LIR: 
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and then by substitution of equations (8) in equation (1) 

we obtain the bulk modulus for a dense fluid. The final 

result is to form B(1). 

      According to equation (8), the experimental value of 

density and the value of 1A , 
2A  and 1B  by applying LIR 

can be used to calculate the value of 

T

p
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. According 

to the LIR, A is linear versus 1 T ; the intercept gives the 

value of A2 and the slope gives the value –A1/R. Also, B 
is linear versus 1 T ; the slope gives the value B1/R. The 

values of 1A  , 
2A  and 1B  for six fluids (Ar, N2, CO, 

CO2, C6H6 and C6H5–CH3) are listed in Table 1, together 

with the temperature range of the experimental data and 

the coefficient of determination. We begin with C6H6 in 

its liquid range for calculating 

T

p




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


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and bulk modulus. 

Figure 1 shows the experimental values of the bulk 

modulus versus density for C6H6 fluid compared with the 

and bulk modulus using the B(1) at 280 K. The bulk 

modulus using the B(1) model yields inaccurate results for 

the liquid phase. Also, this deviation is significant for the 

supercritical phase. Moreover, we predict that this 

deviation leads to inaccurate values of 1A  and
2A ; for this 

purpose, we plot A and B versus inverse temperature (

1 T ) for carbon monoxide [23] and  plots show in Figure 

2. It is clear that A and B versus inverse temperature are 

not first order. 

 
Table 1. The calculated values of A1 , A2 and B1 for different fluids using equations (1) and (2) and the coefficient of determination 

(R2). 

Fluid             A1             A2      R2             B1   R2 Tmin to Tmax 

  Ar              1.717 0.729 1.00 0.162 1.00   85 to 250 

  N2              1.539 0.810 0.99 0.143 0.99   75 to 200 
a CO              1.542 0.770 1.00 0.132 1.00   70 to 210 

 CO2              3.318 0.705 1.00 0.218 0.99 250 to 400  
b C6H6           9.443 1.301 1.00 0.762 1.00 280 to 680 
c C6H5-CH3       16.861 3.179 0.97 1.398 0.97 200 to 660 

a Reference [23], b Reference [24], c  Reference [25] 

, 

 
Figure 1. The experimental values of the bulk modulus versus density for C6H6 fluid are compared with the bulk modulus using 

the B(1) at 280 K. 
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Figure 2. (a) Plot of A versus inverse temperature. The solid line is the linear fit to the A data points, for CO. (b) Plot of B 

versus inverse temperature. The solid line is the linear fit, for CO. 

 

2.2. Second-order temperature dependence of 

parameters 

      In order to solve this problem, the LIR equation of 

state in the form of truncated temperature series of A 

and B parameters has been developed to second order 

for dense fluids. Figures 3(a) and (b) show plots of A 

and B parameters versus inverse temperature for carbon 

monoxide fluid. It is clear that A and B versus inverse 

temperature are second order. Thus, extending 

parameters A and B, we obtain the second-order 

equation as: 

32
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The starting point in the derivation is equation (4) 

again. By substitution of equations (9) and (10) into 

equation (4), we obtain the pressure for a dense fluid: 
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The A and B parameters and their density derivatives 

were calculated from this model, and the final result 

is, for 
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                                                                          (12) 

Finally, by substitution of equations (12) into equation 

(1), we obtain the bulk modulus for a dense fluid to 

form B(2). 

      Therefore, it is possible to calculate the bulk 

modulus at each density and temperature by knowing

1A , 2A , 
3A , 1B , 

2B and 3B . For this purpose we 

have plotted extended parameters of A and B versus 

1 T  that intercept, and the coefficients show the values 

of 1A , 2A , 
3A , 1B , 

2B and 3B  that are given in 

Table 2. For comparison, Figure 4 shows the 

experimental values of the bulk modulus versus density 

for C6H6 fluid, which are compared with the bulk 

modulus using B(1) and LIR B(2) at 280 K . 

 
Table 2. The calculated values of A1, A2 and A3 using equation (9) and B1, B2 and B3 using equation (10) for different fluids, and 

the coefficient of determination (R2). 

Fluid       A1    A2   A3 R2 B1     B2    B3 R2 

Ar 0.402 -108.077 -6349.597 1.000 0.028 10.502 577.487 0.999 

N2 0.368 -75.165 -6058.263 1.000 0.040 6.200 602.767 0.999 

CO 0.489 -116.150 -3637.325 1.000 0.025 10.665 273.036 0.999 

CO2 0.592 -328.327 -10866.137 0.999 0.036 25.980 42.039 0.991 

C6H6 0.819 -701.175 -87611.297 1.000 -0.026 95.381 -757.645 1.000 

C6H5-CH3 -0.142 279.692 353569.439 1.000 0.084 -16.791 28340.004 0.999 
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Figure 3. (a) Plot of A versus inverse temperature. The solid line is the linear fit to the A data points, for CO. (b) Plot of B 

versus inverse temperature. The solid line is the linear fit, for CO. 

 

Figure 4. Experimental values of the Bulk modulus versus density for C6H6 fluid are compared with the Bulk modulus using B(1) 

and  B(2) at 280 K. 

 2.3. Third-order temperature dependence of 

parameters 

In another step, we performed a test to form the 

truncated temperature series of A and B parameters to 

third order: 

32 4
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The starting point in the derivation is equation (4) 

again. By substitution of equations (13) and (14) into 

equation (4), we obtain the pressure for a dense fluid: 
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Finally, by substitution of equations (16) into equation 

(1), we obtain the bulk modulus for a dense fluid to 

form B(3). 

On the basis of equation (16), to obtain 

T

p
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necessary to determine the values of 1A , 2A , 
3A , 4A

, 1B , 2B , 3B  and 4B ; these values are given in Table 

3. In contrast, Figures 5 and 6 show the experimental 

values of the bulk modulus versus density for benzene 

as a liquid and as a supercritical fluid, which are 

compared with the bulk modulus using B(1) , B(2) , B(3) 

and PR at 280 and 680 K, respectively



J. Chem. Lett. 1 (2020) 103-110 

108 

 

 
Table 3. The calculated values of A1, A2 , A3 and A4 using equation (13) and B1, B2 , B3 and B4 using equation (14) for different 

fluids, and the coefficient of determination (R2). 

Fluid        A1   A2   A3     A4  R2   B1     B2      B3   B4 R2 

Ar              0.509 -154.639 -204.726 -252605.473 1.000 0.004 21.106 -821.958 57528.871 0.999 

N2              0.890 -269.399 16473.524 -818810.762 1.000 -0.053 40.973 -3431.035 146589.395 1.000 

CO              0.584 -151.286 393.909 -143448.013 1.000 0.001 19.588 -750.712 36429.199 0.999 

CO2             2.146 -1807.800 451655.351 -47486485.896 1.000 -0.286 332.220 -95697.637 9829469.221 0.996 

C6H6            -0.029 409.238 -539867.462 58435819.360 1.000 0.071 -31.658 50983.732 -6685480.436 1.000 

C6H5-CH3       -0.383 541.788 441148.442 9018987.070 1.000 0.142 -79.596 49357.824 2164439.453 0.999 

 

 

  

Figure 5. Experimental values of the Bulk modulus versus 

density for C6H6 fluid are compared with the Bulk modulus 

using B(1) , B(2) , B(3) and BPR at 280 K. 

 

Figure 6. Experimental values of the Bulk modulus versus 

density for C6H6 fluid are compared with the Bulk modulus 

using B(1) , B(2) , B(3) and BPR 680 K. 

 

 

2.4. Peng-Robinson EOS 

The Peng-Robinson (PR) EOS [26] may be used to 

compute the solubility parameter. This equation is 

given as: 
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where TC and PC are the critical temperature and 

pressure, respectively, and   is acentric factor. 

      In later stages, bulk modulus calculated by Peng-

Robinson (PR) equation of state as a testing the other 

equation of state. 
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3. Experimental tests and discussion 

      The bulk modulus is computed for dense liquid and 

supercritical fluids using three different models. To 

investigate the first-order temperature dependence of 

the parameter A, the six fluids serve as our primary test, 

because of the abundance of available p–v–T data. The 

results are summarized in Table 1. In examining the 

ability of the LIR theory to calculate the bulk modulus 

of dense fluids, benzene and toluene serve because of 

the abundance of available bulk modulus data. Such 

data are more limited for the other fluids examined. 

When we restricted the temperature series of the 

parameters A and B to first order, it was seen that the 

points from the low densities for B(1) deviate 

significantly from the experimental data. 

      To decrease adequately the deviation in the bulk 

modulus from the experimental data, it was necessary 

to extend the temperature series of the parameters A and 

B to second order. Nevertheless, it is only for some 

monatomic fluid similar to Ar that the temperature 
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dependences of the parameters A and B themselves are 

satisfactory to first order. Therefore, the present 

approach for obtaining the bulk modulus from p–v–T 

data contrasts with the experimental data by extension 

of the temperature series of the parameters A and B to 

second order and its derivatives. So, the bulk modulus 

gives the form of B(2).  

      We also considered an even more accurate estimate, 

namely extension of the temperature series of the 

parameters A and B to third order. Then we introduce 

the explicit parameters and temperature dependences 

resulting from the p–v–T data. The final result is for 

bulk modulus to form B(3). In contrast, Figures 7 and 8 

show the experimental values of the bulk modulus 

versus density for liquid and supercritical fluid toluene, 

compared with the thermal pressure coefficient using 

B(1) , B(2), B(3) and BPR at 200 and 660 K, respectively.   

The experimental and calculated values of 

T

p
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using LIR(1), LIR(2)and LIR(3) and the bulk modulus 

using B(1) , B(2), B(3) and BPR are also compared in Tables 

S1–S4 for benzene and toluene fluids. Although all 

three models capture the qualitative features for dense 

fluids, only the calculated values of the bulk modulus 

using the B(2) model produce quantitative agreement. 

Tables S1-S4 present a greater test of these models, 

because only the B(2) model is able to predict accurately 

both the bulk modulus of the liquid and supercritical 

fluids. The B(3) model yields good results for toluene, 

but deviates significantly for benzene, in contrast to the 

experimental values of the bulk modulus coefficient, 

whereas the B(1) model is rather inaccurate for both 

benzene and toluene fluids. 

 

 

Figure 7. Experimental values of the Bulk modulus versus 

density for C6H5CH3 fluid are compared with the Bulk 

modulus using B(1) , B(2) , B(3) and BPR at 200 K. 

 

 

Figure 8. Experimental values of the Bulk modulus versus 

density for C6H5CH3 fluid are compared with the Bulk 

modulus using B(1) , B(2) , B(3) and BPR at  660 K. 

 

4. Conclusion 

In this paper, we have derived an expression for the 

bulk modulus of dense fluids (Ar, N2, CO, CO2, C6H6 

and C6H5–CH3) using the linear isotherm regularity. 

Unlike previous models, it has been shown in this work 

that the bulk modulus can be obtained without 

employing any reduced Helmholtz energy. Only p–v–T 

experimental data have been used for calculating the 

bulk modulus. Comparison of the calculated values of 

the bulk modulus using the linear isotherm regularity 

with the values obtained experimentally show that 

validity of the use of the linear isotherm regularity for 

studying the bulk modulus of monatomic dense fluids 

is doubtful. The validity of the use of the linear 

isotherm regularity equation state for calculating the 

bulk modulus of polyatomic dense fluids is also 

imprecise. In this work, it has been shown that the 

temperature dependences of the intercept and the slope 

using the linear isotherm regularity are nonlinear. This 

problem has led us to try to obtain the expression for 

the bulk modulus using the extended intercept and 

slope of the linearity parameters versus inverse 

temperature to second order. The bulk modulus 

predicted from this simple model are in good agreement 

with experimental data. The results show that the 

accuracy of this method is generally quite good. 
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