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1. Introduction 

Chlamydia trachomatis is the most common sexually 

transmitted bacterial infection all around the world that 

can prompt barrenness and increased susceptibility to 

other sexually transmitted pathogens, such as HIV/AIDs 

[1], tumors and complications of pregnancy, as well as 

trachoma, a recurrent eye infection [2]. Without treatment 

with antibiotics, Chlamydia trachomatis infections of the 

female genital tract can prompt fruitlessness, a major 

public health concern [3]. 85 million people have 

received antibiotics for trachoma, a blinding eye infection 

that occurs in 42 countries [4], and there are more than 

100 million yearly instances of sexually transmitted 
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Chlamydia trachomatis overall [5]. There is no vaccine 

for Chlamydia trachomatis at present. Throughout the 

year’s quantitative structural activity relationship 

(QSAR), 3D-QSAR procedures, for example, 

comparative molecular field analysis (CoMFA) and 

comparative molecular similarity indices analysis 

(CoMSIA) assess key structural features and aid 

underlying alteration in structural modification of the 

compounds to improve their potency [6]. A 14-membered 

macrolide analog against mycobacterium tuberculosis 

was reported by Zitouni et al. Where the 2D-QSAR was 

established, the inhibitory activity of the investigated 

macrolide derivatives was predicted and near agreement 

was obtained between experimental and predicted values 
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Computer-aided drug screening by 2D-QSAR, CoMFA, molecular docking, and 

molecular dynamics (MD) simulation may provide an effective approach to 

identifying promising drug repurposing candidates for Chlamydia trachomatis 

treatment. In this analysis, molecular descriptors were used to achieve a 

statistically momentous 2D-QSAR model (R2 = 0.637; Q2 = 0.5388). The 2D-

QSAR model’s robustness was considered by the internal leave-one-out cross-

validated regression coefficient values (Q2) and the training set values [(r^2-

r0^2)/r^2]. Between the experimental and predicted pIC50 value, the overall 

standard deviation error of prediction (SDEP) was 0.2448, showing strong 2D-

QSAR model predictability. The QSAR model was able to systematically predict 

anti-bacterial behavior with an R2pred value of 0.506 for the external data set 9 of 

the thiazolino 2-pyridone amide derivative. Comparative molecular field analysis 

(CoMFA (FFDSEL) Q2
LOO = 0.238, R2 = 0.943) and CoMFA (UVEPLS) (Q2LOO 

= 0.553, R2 = 0.943) were used. CoMFA (UVEPLS) had strong certification and 

prediction capabilities. We analyzed the binding effect of the derivatives, where 

compounds 29 and 31 have the least binding energy. Compounds 29 and 31 interact 

with main active site residues, including Glu154, Leu142, His87, Arg150, Phe151, 

Asn138, Gly141, His88, Ile137, Cys85 and 145, respectively, through the binding 

interaction modes of the molecular docking inhibitor sequence. Further molecular 

dynamics simulations (MD) were performed on both compounds, and their 

potential binding modes were explored. Glu154, Phe151, Arg150, Asn138, 

Gly141, Cys145, and Ile137 have been found to play a key role in stabilizing 

inhibitors. Besides, the prediction of a golden triangle for the series was carried 

out. The findings will provide useful guidance in the future for the design of new 

inhibitors of Chlamydia trachomatis. 
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[7]. Marwaha et al. likewise revealed a high-content 

screen of 9,800 compounds identifying acylated 

sulfonamides as novel growth inhibitors of the sexually 

transmitted pathogen Chlamydia trachomatis [1]. The 

impact was bactericidal and distinct from that of 

sulfonamide antibiotics, as para-amino benzoic acid did 

not reduce efficacy. Dahlgren et al. did a statistical 

molecular design (SMD), quantitative structure-activity 

relationship (QSAR) modeling to pick up knowledge into 

the structural basis of the inhibitory mechanism of novel 

salicylidene acylhydrazides as inhibitors of type III 

secretion (T3S) in the Gram-negative pathogen Yersinia 

pseudotuberculosis [8]. Mojica and his coworker 

introduced a form of image-based screening with red 

fluorescent Chlamydia that was autonomously detected 

without the need for immune-staining Chlamydia by 

automated microscopy. The technique was applied to 

compounds that inhibit the growth of Chlamydia and 

identified Australian natural compounds that were 

previously defined as an antimicrobial activity in image-

based screening.  Besides, the approach was used over 

time for live-cell monitoring of Chlamydia-infected cells 

and visualized the growth inhibitory effect of Chlamydia 

cell culture infection's most active natural compound [9]. 

For the study of different bacteria inhibitors, a variety of 

in-silico, in-vitro, and in-vivo techniques have been 

applied. To establish more efficient ways of managing 

this infection and preventing the reproductive 

dysfunction it is associated with much more research is 

required to understand the balance between the immune 

response and the organism's development. There are few 

treatment options for infections with these mandatory 

intracellular bacteria and the most common treatment 

worldwide is a single dose of azithromycin, 

erythromycin, and doxycycline. In other human 

pathogenic bacteria, this protocol has preferred macrolide 

tolerance [10, 11] and a more selective approach would 

therefore be preferable. C. trachomatis readily develop 

resistance to antibiotics in in-vitro [12] and novel anti-

chlamydial agents may become important in the future 

for the treatment of these infections.  To recognize lead 

compounds for anti-chlamydial medication 

improvement, we screened a library of 46 thiazolino 2-

pyridone amide derivatives for their ability to hinder 

Chlamydia development. In this investigation, QSAR 

models for thiazolino 2-pyridone amide derivatives of 

Chlamydia trachomatis inhibitors are provided in this 

report. Also, it addresses the binding mode of most 

activity compounds obtained through docking and MD 

simulation tests at the Chlamydia trachomatis binding site 

is examined. 

 

2. Results and Discussion 

The 2D-QSAR model created in this study was factually 

best fitted and along these lines was utilized for 

prediction of activities against strains of Chlamydia 

trachomatis of training and test sets (pIC50) of molecules, 

as reported in model 1. The R2 and Q2 values of 0.637 and 

0.539, respectively, of the model, corroborate with the 

criteria for a QSAR model to be highly predictive [25]. 

The standard error of estimate (SEE) for the model was 

0.2436, which is a marker of the strength of the fit and 

recommended that the predicted pIC50 based on model 1 

is solid [26]. 

pIC50 = 3.58996+0.21534ALogP +0.33886nHBint3 

+0.25785MLogP_____________Model 1 

SEE = 0.2298, R2 = 0.6374, R2 adjusted = 0.6044, F = 

19.3359, Q2 = 0.5388, PRESS = 2.2168, SDEP = 0.2448, 

RMSEP = 0.2858, R2pred = 0.506, K = 1.0213, [(r^2-

r0^2)/r^2] = 0.0285, K' = 0.9771 

 

The root means square error of prediction (RMSEP) 

between the experimental and predicted pIC50 values was 

0.286, which uncover great consistency. The value of 

[(r^2 –r0^2)/r^2] = 0.029, which is under 0.1 specified 

worth [25] and in this way approve the value of the QSAR 

model for foreseeing the organic action (biological 

activity) of the external data set. Likewise, the 

estimations of K and K′ were 1.021 and 0.977, 

respectively, which are well inside the predetermined 

scopes of 0.85 and 1.15 [25]. The values of R2
pred = 0.506 

were found to be in the acceptable range [27] in this way 

showing the great external consistency of the QSAR 

model. The connection between predicted activities and 

the corresponding experimental activities is presented in 

Table 1. Williams plot (Figure 1A) [28], clearly two 

compounds, the training set (compound 3) and test set 

(compound 31) fall outside the space of the model (the 

warning leverage limit is 0.32). These compounds (3 and 

31) have the leverage higher than the warning h* value, 

consequently they can be viewed as structural outliers. 

Fortunately, for this situation, the information anticipated 

by the model is acceptable, hence they are ‘‘acceptable 

leverage” compounds. For all the compounds in the 

training and test sets, their standardized residuals are 

more modest than three standard deviation units (±3δ).  

Insubria graph [29] were also used to confirm the 

Williams plot, we checked that most of the examined 46 

compounds fell into the structural applicability domain 

(AD) of the QSAR model; in details, 44 compounds 

(96%) were inside the domain for the range of descriptors 

method, compound 3 and 31 (4%) fell outside the AD 

(Figure 1B). This permits us to think about most of our 

expectations as introduced by the model, and thus more 

reliable.  The determination coefficient (R2) of this model 

was 0.637, which shows the great internal prediction 

power of this model (Figure 1C), where the difference 

between the experimental and predicted are not far from 

each other (Figure 1D). Therefore, the results of 

validations steps show that the model can be delegated a 

decent model since according to the criteria used, it has a 

great interior (internal) and outer (external) quality, it is 

robust, it doesn’t experience chance correlation at 
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random, and it shows a good capacity of external 

predictions [30].  

 
Table 1: 2D-QSAR and CoMFA observed and predicted 

activities 

Methods 2D-QQSAR CoMFA 

(FFDSEL) 

CoMFA 

(UVEPLS) 

Na

me 

Yo

bs 

Ypr

ed 

Resid

uals 

Yp

red 

Resid

uals 

Yp

red 

Resid

uals 

2 6 6.2

094 

-

0.209

4 

6.0

65 

-

0.065 

6.0

26 

-

0.026 

3 5.3

01 

4.9

051 

0.395

9 

5.3

73 

-

0.072 

5.2

99 

0.002 

4 5.6

021 

5.5

224 

0.079

7 

5.5

75 

0.027

1 

5.5

53 

0.049

1 

5 5.6

021 

5.6

021 

0 5.5

07 

0.095

1 

5.5

28 

0.074

1 

7 5.6

021 

5.6

021 

0 5.5

05 

0.097

1 

5.5

24 

0.078

1 

8 5.6

021 

5.9

178 

-

0.315

7 

5.5

19 

0.083

1 

5.5

99 

0.003

1 

9 5 4.9

729 

0.027

1 

5.1

59 

-

0.159 

5.1 -0.1 

10 5 5.5

197 

-

0.519

7 

4.8

42 

0.158 4.9

4 

0.06 

12 6 6.1

854 

-

0.185

4 

5.9

13 

0.087 5.9

79 

0.021 

13 6.6

021 

5.9

967 

0.605

4 

6.5

77 

0.025

1 

6.5

46 

0.056

1 

14 5.6

021 

5.6

214 

-

0.019

3 

5.5

02 

0.100

1 

5.4

95 

0.107

1 

15 5.6

021 

5.4

537 

0.148

4 

5.6

09 

-

0.006

9 

5.5

55 

0.047

1 

17 5 5.3

453 

-

0.345

3 

5.1

52 

-

0.152 

5.0

9 

-0.09 

18 6 5.7

221 

0.277

9 

6.0

59 

-

0.059 

6.0

72 

-

0.072 

19 6 5.5

089 

0.491

1 

6.0

09 

-

0.009 

6.0

1 

-0.01 

20 5.6

021 

5.6

326 

-

0.030

5 

5.5

76 

0.026

1 

5.6

6 

-

0.057

9 

22 5.6

021 

5.4

911 

0.11 5.5

13 

0.089

1 

5.5

06 

0.096

1 

23 5.6

021 

5.4

067 

0.195

4 

5.7

4 

-

0.137

9 

5.6

31 

-

0.028

9 

24 5.6

021 

5.2

438 

0.358

3 

5.6

32 

-

0.029

9 

5.6

26 

-

0.023

9 

25 5.6

021 

5.5

525 

0.049

6 

5.5

66 

0.036

1 

5.5

48 

0.054

1 

27 6 5.7

042 

0.295

8 

5.6

96 

0.304 5.7

17 

0.283 

28 5.6

021 

5.6

905 

-

0.088

4 

5.7

32 

-

0.129

9 

5.7

57 

-

0.154

9 

29 5.6

021 

5.7

544 

-

0.152

3 

5.6

33 

-

0.030

9 

5.6

82 

-

0.079

9 

30 5.6

021 

5.4

898 

0.112

3 

5.8

2 

-

0.217

9 

5.8

03 

-

0.200

9 

32 5.6

021 

5.5

525 

0.049

6 

5.4

69 

0.133

1 

5.5

03 

0.099

1 

33 5.6

021 

5.6

559 

-

0.053

8 

5.6

42 

-

0.039

9 

5.6

51 

-

0.048

9 

34 5.6

021 

5.7

367 

-

0.134

6 

5.5

35 

0.067

1 

5.5

45 

0.057

1 

35 5.6

021 

5.4

898 

0.112

3 

5.5

39 

0.063

1 

5.5

88 

0.014

1 

37 5 5.2

055 

-

0.205

5 

5.0

54 

-

0.054 

4.9

86 

0.014 

38 5 5.4

989 

-

0.498

9 

4.9

56 

0.044 4.9

98 

0.002 

39 5 5.0

515 

-

0.051

5 

5.1

3 

-0.13 5 0 

40 5.3

01 

5.1

373 

0.163

7 

5.4

27 

-

0.126 

5.4

72 

-

0.171 

42 5.3

01 

5.2

539 

0.047

1 

5.2

87 

0.014 5.3

01 

0 

43 5 5.2

977 

-

0.297

7 

5.0

44 

-

0.044 

5.0

06 

-

0.006 

44 5 5.0

953 

-

0.095

3 

4.9

94 

0.006 5.0

38 

-

0.038 

45 5.6

021 

5.6

932 

-

0.091

1 

5.5

84 

0.018

1 

5.6

33 

-

0.030

9 

46 5.3

01 

5.3

157 

-

0.014

8 

5.3

13 

-

0.012 

5.2

82 

0.019 

Tes

t 

set 

Yo

bs 

Ypr

ed 

Resid

uals 

Yp

red 

Resid

uals 

PC 

5 

Resid

uals 

1 5.6

021 

5.9

615 

-

0.359

4 

5.9

06 

-

0.303

9 

5.8

71 

-

0.268

9 

6 5.6

021 

5.6

021 

0 4.7

38 

0.864

1 

4.7

05 

0.897

1 
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11 6.6

021 

6.0

167 

0.585

4 

6.1

27 

0.475

1 

6.0

95 

0.507

1 

16 5.6

021 

5.6

204 

-

0.018

3 

5.7

73 

-

0.170

9 

5.7

87 

-

0.184

9 

21 5.6

021 

5.3

714 

0.230

7 

5.4

58 

0.144

1 

5.4

45 

0.157

1 

26 5.6

021 

5.6

531 

-

0.051 

5.0

21 

0.581

1 

4.9

92 

0.610

1 

31 5 4.9

041 

0.095

9 

5.4

33 

-

0.433 

5.4

57 

-

0.457 

36 5.6

021 

5.3

949 

0.207

2 

5.4

37 

0.165

1 

5.5

34 

0.068

1 

41 5.6

021 

5.2

085 

0.393

6 

4.8

49 

0.753

1 

4.9

7 

0.632

1 

 

 

 

 

 

Figure 1: Diagram of the prediction comparison (A) Williams 

plot, (B) Insubria graph, (C) observed IC50 vs. predicted IC50, 

and (D) Residuals plot. 

The QSAR developed indicated that Ghose-Crippen 

LogKow (ALogP), Count of E-State descriptors of 

strength for potential Hydrogen Bonds of path length 3 

(nHBint3), and Mannhold LogP (MLogP) has positive 

values in the mean effect (MF) demonstrate that the 

showed descriptor contributes absolutely to the value of 

pIC50, the more the rate of the properties (descriptor) the 

higher the value of pIC50. In other words, increasing the 

ALogP (0.5%), nHBint3 (98.30%), and MLogP (1.2%) 

increases the extent of pIC50 of the thiazolino 2-pyridone 

amide derivatives (Table 2) by the percentage 

contribution. To further check the inter-correlation of 

descriptors, the variance inflation factor (VIF) analysis 

was implemented. In this model, the VIF values of these 

descriptors are shown in Table 2 which are less than the 

threshold value of 5 [26, 31], which conforms to the study 

that, the properties engaged in the model are not inter-

correlated with one another. 

Table 2: Description of selected variables are as follows:   

Symbol Name 

Descriptors 

Mean 

effect 

Percentage 

contributio

n (%) 

VIF 

ALogP 

(PaDEL

; 2D) 

Ghose-

Crippen 

LogKow 

0.279

6 

0.50 1.097

2 

nHBint

3 

(PaDEL 

= 2D)  

Count of E-

State 

descriptors 

of strength 

for potential 

Hydrogen 

Bonds of 

path length 

3 

54.53

27 

98.30 1.038

7 

MLogP 

(PaDEL

; 2D),  

Mannhold 

LogP 

0.663

80 

1.20 1.057

5 
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The 3D-QSAR model with reliable predictive ability 

must fulfill the accompanying conditions: leave one out 

cross-validation (Q2
LOO) should be greater than 0.5, 

determination coefficient (R2) should be greater than 0.9, 

the standard deviation error in estimation (SDEC) worth 

should be as small as could be expected under the 

circumstances and the F-test worth should be high as 

could be expected under the circumstances [32].  

To more readily comprehend the underlying structural 

requirement of thiazolino 2-pyridone amide inhibitors, 

two Open3DQSAR models were developed using two 

distinctive variable choice strategies, named fractional 

factorial design (FFDSEL), where the steric and 

electrostatic field descriptors explain 54.0% and 46.0% 

of the variance, respectively (Figure 2) and UVE-PLS 

variable selection (UVEPLS), where the steric and 

electrostatic field descriptors explain 44.0% and 56.0% 

of the variance, respectively (Figure 3). 

 The measurable boundaries determined by 

Open3DQSAR models showed good R2 and Q2
LOO 

values. Looking at the measurable highlights shows that 

UVE-PLS variable selection created by Open3DQSAR 

models could provide suitable results; however, the 

outcomes for the UVE-PLS model (R2 = 0.943; F-test = 

102.376; Q2
LOO = 0.553) are higher than those gotten 

from the FFDSEL (R2 = 0.92; F-test = 71.013; Q2
LOO = 

0.238) variable choice technique. In this way, the UVE-

PLS model is viewed as the best 3D-QSAR model. The 

partial least square (PLS) steric-electrostatic contour map 

of Open3DQSAR models of thiazolino 2-pyridone amide 

inhibitors is represented in Figure 3. 

 The red and the blue areas portray the steric bulky 

groups, favorable and unfavorable, respectively, to 

thiazolino 2-pyridone amide inhibition activity. The 

green contours demonstrate the regions where the 

presence of electropositive groups would add to 

expanding thiazolino 2-pyridone amide inhibitory 

strength, while the shapes of the yellow contours show 

the territories where such electro-positivity is 

unfavorable to biological activity.  

As demonstrated in Figure 3, the red contour and green 

contours at the region propose a bulkier sweet-smelling 

bunch (aromatic group) was important to the thiazolino 

2-pyridone amide inhibition activity of a ligand. 

 Most importantly, our Open3DQSAR study uncovers the 

significance of a four-atom linker at blue contour and a 

bulkier group at red contour for better biological potency. 

The observed/experimental (Yobs) and 

predicted/estimated (Ypred) activities along with the 

residual values of the training set and test set molecules 

are potted in Table 1. 

 

 

 

 

Figure 2. CoMFA (FFDSEL) contour map with reference 

compound 29 
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Figure 3. CoMFA (UVEPLS) contour map with reference 

compound 29 

 

The docking studies were done to virtual screen the 46 

compounds, screened in-prior through the determined 

3D-QSAR model, just as to recognize the binding 

potency and poses of dynamic molecules so that to 

uncover the molecular mechanism of action. Before 

docking contemplates, the protein (PDB: 5KBC) was 

readied. The ligands, when docked, exhibited a few 

postures, orientation, and thus several configurations. 

Each configuration is portrayed as a consolidated score 

of Van der Waals forces, conventional hydrogen bonding, 

carbon-hydrogen bonding, hydrophobic interaction as 

well as other relevant parameters. The least auto 

dock/vina score indicates a higher chance of ligand-

protein binding (Table 4). The docked ligands, namely, 

compound 29 and 31 gives a docking score of -8.9 

kcal/mol. Both compounds were found interacting with 

Van der Waals forces, conventional hydrogen bonding, 

carbon-hydrogen bonding, and hydrophobic interaction, 

whereas, compound 29, form a halogen interaction with 

His88 amino acid. Compounds 29 and 31 showed 

hydrogen bond formation. Compound 31 has the highest 

number of interactions with the enzyme. These outcomes 

demonstrate that the candidate compound (ligand 31, 

with the highest number of interactions) showed good 

docking interactions in contrast with compound 29, thus 

indicating the high binding affinity of these hit 

compounds (Figure 4). The detailed docking score is 

shown in Table 4. The hydrogen bond interactions 

alongside interactive amino acid were summed up in 

Table 3. Furthermore, a 2D diagram was given in Figure 

4 to uncover different molecular interactions. These 

interactions are meant by separate colors and their 

interpretation as presented in Figure 4.  

 

 

 

 
Figure 4. Finest docking poses for binding of physiological 

ligands to (A) compound 29 (B) compound 31 

 
Table 3. Hydrogen bond interactions of compound 29 and 31 

Compound 

29 

Distance Donor 

Atom 

Acceptor 

Atom 

HIS87: HN - 

:CYS84: O 

2.4866 HN O 

ASN138:HN 

- cpd29:F 

2.3149 HN F 

LEU142: 

HN -

ASN138: O 

2.1800 HN O 

CYS145:HN 

-GLY141:O 

2.3987 HN O 

Cpd29: H – 

cpd29: O 

2.2507 H O 

Compound 

31 

Distance Donor 

Atom 

Acceptor 

Atom 

HIS87: HN -

CYS84: O 

2.4866 HN O 

ASN138:HN 

- :cpd31: O 

1.9752 HN O 

LEU142: 

HN -

ASN138: O 

2.1800 HN O 

CYS145: 

HN -

GLY141: O 

2.3987 HN O 

cpd31: H – 

cpd31: O 

2.3974 H O 

cpd31: H - 

HIS88: O 

1.8569 H O 

 

The MD simulations of the protein-ligand complex 

demonstrate the stability of the complex and permitted 

additional data about the binding mode of ligands. The 

root mean square deviation (RMSD, hydrogen bond, total 

energy, and temperature plot during the MD simulations 

are shown in Figure 5A to 5D, respectively. The 

simulation result layout that the RMSD is around 1.7Å 

(Figure 5A), total energy, and temperature fluctuate 

around -41,307kcal/mol, 298K, respectively after 50,000 

runs. Comparing the configuration of the complex after 

stimulation with the docking confirmation as shown in 
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Figure 6. Compounds 29 and 31 assume a similar docking 

site with the protein but move better off in the binding 

pocket of the protein and this would altogether expand 

the binding affinity. From the results, CoMFA 

(UVEPLS), molecular docking, and MD simulations 

show a strong understanding of the structure-activity 

relationship and binding modes of the ligand for 

inhibitors of the crystal structure of Chlamydia 

trachomatis DsbA. The results of 3D-QSAR uncover the 

impact of each steric and electrostatic interaction on the 

bioactivity, and the docking results affirmed this 

outcome. At the same time, the results of molecular 

docking and MD simulations also uncovered some 

important interactions concerning the ligands and the 

protein. The MD simulations also explained hydrogen 

bond, steric, and electrostatic interaction on the ligand 

with the key active site residues, including Glu154, 

Leu142, His87, Arg150, Phe151, Asn138, Gly141, 

His88, Ile137, Cys85 and 145, respectively. These 

molecular modeling studies would give valuable data and 

apparatuses for our next plan and improvement of other 

Chlamydia trachomatis inhibitors. 

A 

B 

C 

D 
Figure 5. Simulated protein (A) RMSD of the protein; (B) 

Hydrogen bond of the protein; (C) Total energy of the protein 

and (D) Temperature of the simulated protein. 

 

A 

 

B 

 

Figure 6. 2D simulated complex (A) compound 29 and (B) 

compound 31 

 

According to Muegge and his coworker proposed that, for 

effective drug candidates, molecular weight (MW) 

should be less than 600 but greater than 200Da and the 

atomistic and knowledge-based method (XLOGP3) 

should be greater than -2 and less than 5 [33]. Golden 

triangles were applied according to Muegge et al., 

proposal. The Golden Triangle can be used as a device to 

affect the plan of new focuses by accomplishing a higher 

likelihood of drug-like space [34]. 

 The likelihood of achievement in amplifying strength, 

steadiness, and penetrability is acknowledged by moving 

the plan properties into a region with a baseline of 

XLOGP3 = 2 to 7 at MW = 600, these cutoff points a 

three-sided shape (triangular shape), called the golden 

triangle. For our arrangement of molecules, compound 31 

has an extraordinary vulnerability and low clearance 

since they are engaged inside the golden triangle area 

(Figure 8). As per the outcomes got by these principles, 

these compounds 31 (with MW = 509.62 and XLOGP4 = 

4.28) have the most elevated likelihood of 
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accomplishment in augmenting intensity, stability, 

porousness, and oral ingestion compared to compound 29 

(with MW = 520.57 and XLOGP3 = 5.89). 

 

 
Figure 7. Permeability, potency, stability, and clearance trends 

across MW and XLOGP3. 

 

3. Material and Methods 

3.1. General 

The dataset utilized in this investigation comprised of a 

series of thiazolino 2-pyridone amide derivative that has 

been reported as antimicrobial activity against Chlamydia 

trachomatis 

[https://pubchem.ncbi.nlm.nih.gov/bioassay/1293489]. 

The test IC50 estimations of all compounds in µM were 

changed over into pIC50 by taking -Log (IC50×10^-6) and 

were utilized as the reliant variable. 

 There were a total of 46 thiazolino 2-pyridone amide 

derivatives which are then part into a training set of 37 

compounds for generating 2D and 3D QSAR models and 

a test set of 9 compounds for validating the nature of the 

models.  

The compounds in the test set were manually selected 

from the original pool of structures based on 

activity/property-based. This methodology is based on 

activity (activity/property based) sampling. Molecules 

with low, moderate, and high activity were put in both 

sets for the maintenance of uniform distribution. Table 4 

lists all of the names and related inhibitory behaviors. 

Using the freely available Marvin View program, 2D 

structures of 46 thiazolino 2-Pyridone amide derivatives 

were developed. Then the structures were translated to 

the format .sdf. To build a three dimensional (3D) 

structure, the .sdf file is transferred to Spartan'14 v1.1.4. 

These structures were then exposed to energy 

minimization. Energy-minimized molecules were 

exposed to streamlining through parameterization 

strategy (semi-empirical PM3). Finally, optimized with 

semi-empirical (PM6) and also transferred to PaDEL-

Descriptor version 2.20 [13] and were subjected to a re-

optimization MMFF94 force field. 

 

Table 4: Thiazolino 2-pyridone amide analog compounds as 

Chlamydia trachomatis inhibitor 

No

. 

NAME CID µ

M 

pIC5

0 

Binding 

Energy 

1 6-amino-7-

[(4-

chlorophenyl)

methyl]-8-

cyclopropyl-

N-(4-

methylphenyl)

-5-oxo-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1270

2911

0 

2.5 5.602

1 

-7.7 

2 6-amino-8-

cyclopropyl-

7-[(2,3-

dimethylphen

yl)methyl]-N-

(4-

methylphenyl)

-5-oxo-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1270

2911

1 

1 6 -7.1 

3 (3R)-8-

cyclopropyl-

6-(4-

morpholinylm

ethyl)-7-(1-

naphthalenyl

methyl)-5-

oxo-N-

phenyl-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1270

2911

2 

5 5.301

0 

-7.9 

4 8-

cyclopropyl-

7-(1-

naphthalenyl

methyl)-5-

oxo-N-

phenyl-3-

thiazolo[3,2-

a]pyridinecarb

oxamide 

8628

0664 

2.5 5.602

1 

-8.2 

5 8-

cyclopropyl-

7-(1-

naphthalenyl

methyl)-5-

oxo-N-

8634

4191 

2.5 5.602

1 

-7.7 

1

3

456
8

9

1012

14

1720 25
26

293136
37

43

0

100

200

300

400
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0 2 4 6 8
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phenyl-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

6 (3R)-8-

cyclopropyl-

7-(1-

naphthalenyl

methyl)-5-

oxo-N-

phenyl-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

8634

4376 

2.5 5.602

1 

-8.0 

7 (3S)-8-

cyclopropyl-

7-(1-

naphthalenyl

methyl)-5-

oxo-N-

phenyl-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

8634

4377 

2.5 5.602

1 

-8.2 

8 8-

cyclopropyl-

N-(2-

fluorophenyl)-

7-(1-

naphthalenyl

methyl)-5-

oxo-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1237

9447

3 

2.5 5.602

1 

-8.2 

9 8-

cyclopropyl-

7-methyl-5-

oxo-N-

phenyl-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1237

3146

2 

10 5 -7.0 

10 3-

[anilino(oxo)

methyl]-8-

cyclopropyl-

7-(1-

naphthalenyl

methyl)-5-

oxo-2,3-

dihydrothiazol

1270

3000

9 

10 5 -7.9 

o[3,2-

a]pyridine-6-

carboxylic 

acid 

11 6-amino-8-

cyclopropyl-

7-(1-

naphthalenyl

methyl)-5-

oxo-N-

phenyl-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1232

8226

9 

0.2

5 

6.602

1 

-8.4 

12 6-amino-8-

cyclopropyl-

N-(3-

methylphenyl)

-7-(1-

naphthalenyl

methyl)-5-

oxo-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1270

3001

2 

1 6 -8.7 

13 6-amino-8-

cyclopropyl-

N-(4-

methylphenyl)

-7-(1-

naphthalenyl

methyl)-5-

oxo-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1270

3001

3 

0.2

5 

6.602

1 

-7.9 

14 8-

cyclopropyl-

7-[(2,3-

dimethylphen

yl)methyl]-5-

oxo-N-

phenyl-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1233

4466

0 

2.5 5.602

1 

-7.7 

15 8-

cyclopropyl-

7-[(2,3-

dichloropheny

l)methyl]-5-

oxo-N-

phenyl-2,3-

1270

3003

9 

2.5 5.602

1 

-7.8 
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dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

16 8-

cyclopropyl-

7-[(3,4-

dimethylphen

yl)methyl]-5-

oxo-N-

phenyl-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1239

0878

8 

2.5 5.602

1 

-7.6 

17 8-

cyclopropyl-

5-oxo-N-

phenyl-7-(5-

quinolinylmet

hyl)-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1270

3033

3 

10 5 -8.0 

18 8-

cyclopropyl-

7-[(2,3-

dimethylphen

yl)methyl]-N-

(4-

methylphenyl)

-5-oxo-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1270

3033

4 

1 6 -7.8 

19 7-[(4-

chlorophenyl)

methyl]-8-

cyclopropyl-

N-(4-

methylphenyl)

-5-oxo-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1270

3033

5 

1 6 -7.1 

20 6-amino-8-

cyclopropyl-

7-(1-

naphthalenyl

methyl)-5-

oxo-N-(4-

pyrimidinyl)-

2,3-

dihydrothiazol

1270

3063

0 

2.5 5.602

1 

-8.3 

o[3,2-

a]pyridine-3-

carboxamide 

21 8-

cyclopropyl-

5-oxo-N-

phenyl-7-

(phenylmethyl

)-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1237

5582

0 

2.5 5.602

1 

-7.5 

22 8-

cyclopropyl-

7-[(3-

methylphenyl)

methyl]-5-

oxo-N-

phenyl-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1270

3063

1 

2.5 5.602

1 

-7.7 

23 7-[(4-

chlorophenyl)

methyl]-8-

cyclopropyl-

5-oxo-N-

phenyl-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1270

3063

2 

2.5 5.602

1 

-6.9 

24 8-

cyclopropyl-

7-[(4-

methoxyphen

yl)methyl]-5-

oxo-N-

phenyl-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1270

3063

3 

2.5 5.602

1 

-7.4 

25 8-

cyclopropyl-

N-(3-

fluorophenyl)-

7-(1-

naphthalenyl

methyl)-5-

oxo-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1239

4192

3 

2.5 5.602

1 

-8.4 
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26 N-(3-

chlorophenyl)

-8-

cyclopropyl-

7-(1-

naphthalenyl

methyl)-5-

oxo-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1239

0916

0 

2.5 5.602

1 

-8.2 

27 8-

cyclopropyl-

N-(3-

methylphenyl)

-7-(1-

naphthalenyl

methyl)-5-

oxo-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

8634

5111 

1 6 -8.4 

28 8-

cyclopropyl-

N-(3-

ethylphenyl)-

7-(1-

naphthalenyl

methyl)-5-

oxo-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1270

5338

3 

2.5 5.602

1 

-8.2 

29 8-

cyclopropyl-

7-(1-

naphthalenyl

methyl)-5-

oxo-N-[3-

(trifluorometh

yl)phenyl]-

2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1237

0150

8 

2.5 5.602

1 

-8.9 

30 8-

cyclopropyl-

N-(3-

methoxyphen

yl)-7-(1-

naphthalenyl

methyl)-5-

oxo-2,3-

1233

7572

4 

2.5 5.602

1 

-8.1 

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

31 8-

cyclopropyl-

N-[3-

(methylcarba

moyl)phenyl]-

7-(1-

naphthalenyl

methyl)-5-

oxo-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1270

5339

0 

10 5 -8.9 

32 8-

cyclopropyl-

N-(4-

fluorophenyl)-

7-(1-

naphthalenyl

methyl)-5-

oxo-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1238

3049

4 

2.5 5.602

1 

-7.9 

33 N-(4-

chlorophenyl)

-8-

cyclopropyl-

7-(1-

naphthalenyl

methyl)-5-

oxo-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1238

7665

3 

2.5 5.602

1 

-8.0 

34 8-

cyclopropyl-

N-(4-

methylphenyl)

-7-(1-

naphthalenyl

methyl)-5-

oxo-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1177

1050

9 

2.5 5.602

1 

-8.0 
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35 8-

cyclopropyl-

N-(4-

methoxyphen

yl)-7-(1-

naphthalenyl

methyl)-5-

oxo-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1235

9598

3 

2.5 5.602

1 

-8.2 

36 N-(4-

carbamoylphe

nyl)-8-

cyclopropyl-

7-(1-

naphthalenyl

methyl)-5-

oxo-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1232

8833

3 

2.5 5.602

1 

-8.0 

37 8-

cyclopropyl-

7-(1-

naphthalenyl

methyl)-5-

oxo-N-(4-

sulfamoylphe

nyl)-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1235

2025

0 

10 5 -8.2 

38 8-

cyclopropyl-

7-(1-

naphthalenyl

methyl)-5-

oxo-N-(2-

pyridinyl)-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1236

2570

0 

10 5 -7.9 

39 8-

cyclopropyl-

7-(1-

naphthalenyl

methyl)-5-

oxo-N-(3-

pyridinyl)-2,3-

dihydrothiazol

o[3,2-

1236

8818

8 

10 5 -7.8 

a]pyridine-3-

carboxamide 

40 8-

cyclopropyl-

7-(1-

naphthalenyl

methyl)-5-

oxo-N-

pyridin-4-yl-

2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1237

7057

3 

5 5.301

0 

-7.6 

41 8-

cyclopropyl-

7-(1-

naphthalenyl

methyl)-5-

oxo-N-(4-

pyrimidinyl)-

2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1240

1743

2 

2.5 5.602

1 

-8.2 

42 8-

cyclopropyl-

7-(1-

naphthalenyl

methyl)-5-

oxo-N-(2-

thiazolyl)-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1240

0303

9 

5 5.301

0 

-7.7 

43 8-

cyclopropyl-

N-methyl-7-

(1-

naphthalenyl

methyl)-5-

oxo-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1270

5342

1 

10 5 -7.4 
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44 N-cyclohexyl-

8-

cyclopropyl-

7-(1-

naphthalenyl

methyl)-5-

oxo-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1235

6746

5 

10 5 -7.6 

45 8-

cyclopropyl-

7-(1-

naphthalenyl

methyl)-5-

oxo-N-

(phenylmethyl

)-2,3-

dihydrothiazol

o[3,2-

a]pyridine-3-

carboxamide 

1234

0547

6 

2.5 5.602

1 

-8.0 

46 8-

cyclopropyl-

N-methyl-7-

(naphthalen-1-

ylmethyl)-5-

oxo-N-

phenyl-2,3-

dihydro-

[1,3]thiazolo[

3,2-

a]pyridine-3-

carboxamide 

1234

0343

1 

5 5.301

0 

-8.4 

 
Figure 8. Alignment of thiazolino 2-pyridone amide 

inhibitors as obtained from Open3DALIGN 

 

3.2. 2D-QSAR and CoMFA analysis 

 

    Physicochemical properties are the mathematical 

description of a comprising numerous sources of 

transformed and coded chemical knowledge to address 

chemical, biological, and pharmacological issues. 

Various physicochemical descriptors for each of the 

compounds in the dataset using PaDEL software v2.20 

[13] are determined for the creation of 2D QSAR models. 

Various arrangements of 2D and 3D molecular 

descriptors are determined with the assistance of PaDEL 

software. Using DTC-Lab software 

(http://poi.apache.org/), 2D-QSAR models were 

developed. The stepwise multiple linear regression (S-

MLR) is utilized to assemble the QSAR model. The basic 

idea behind the stepwise MLR regression approach is that 

by entering and removing predictors in a stepwise way 

until there is no justifiable reason to enter or remove any 

more to construct a multiple linear regression (MLR) 

model from a collection of predictors/independent 

variables/descriptors, i.e. till no more significant variable 

is available. 

One of the most important steps for obtaining a correct 

molecular interaction field model is the sufficient 

alignment of the compounds relative to each other in the 

3D-QSAR analysis. Energy-minimized molecular 

structures were aligned using the template-based process. 

In the combination of Atom-based fashion and 

pharmacophore-based fashion, the mixed alignment 

process was performed using Open3DALIGN software 

v2.3, an open-source platform capable of performing 3D 

molecular structures' multi-conformational, unsupervised 

rigid-body alignment [14]. Using all available molecules 

as potential templates, the alignment procedure was 

carried out. Therefore, 46 alignments, each obtained by 

superimposition on the corresponding molecule of the 

template, were made. An O3A-score derived from the 

source code of the Open3DALIGN software is measured 

for each alignment, which indicates the consistency of the 

superimposition. For further study, the alignment 

corresponding to the highest cumulative O3A-score has 

been chosen.  Figure 8 reveals the optimal alignment 

under which the prototype was chosen as compound 29. 

CoMFA (Comparative Molecular Field Analysis) is an 

adjustable tool for quantitatively describing 3D-QSAR. 

This analysis utilized Open3DQSAR to perform CoMFA 

investigation which is an open-source program available 

for high-throughput molecular interaction force field 

(MIF) chemometric analysis [15]. The best arrangement 

with compound 29 as a format is put in a three-

dimensional (3D) cubic lattice with a grid size of 2Å and 

a distance of 5.0Å. Using an sp3 hybridized carbon atom 

probe with + 1 charge, van der Waals' (steric fields) were 

computed. Similarly, using a volume less probe, 

electrostatic fields were computed. Such energies of 

steric and electrostatic interaction were regarded as 

independent variables (CoMFA descriptors). To 

minimize the noise concealed in the partial least square 

(PLS) matrix and thus decrease the computational time, 

the CoMFA model was developed following pre-

treatment operations: 

(1) A cutoff value of −30.0 and +30.0 kcal/mol 

respectively was set for the minimum and maximum 

steric and electrostatic energy values. The infinity of 

http://poi.apache.org/
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energy values within the molecule is avoided by this 

pretreatment. 

2) For both probes, it zeroes both negative and positive 

values below a threshold of 0.05. 

3) Eliminates X variables below a threshold of 0.1 with a 

Standard Deviation. 

4) N-level variables are variables that presume that only 

N values have been removed from the training set, most 

of which are spread over a limited number of items. This 

mechanism prevents the importance of unique 

substituents found in a single molecule from 

overweighting. Otherwise, the entire model may be 

adversely influenced by it. 

5) The entire block of X or Y variables, scaled by the 

technique of block unscaled weighting (BUW). 

Reasonable variable clustering and selection processes 

such as smart region description (SRD) and fractional 

factorial design (FFD) will significantly boost the 

CoMFA model's predictivity. With no predictability, 

these variable selection strategies selectively delete noisy 

variables. Based on their closeness in 3D space, the SRD 

procedure performs variable grouping to reduce the 

redundancy resulting from the presence of several nearby 

descriptors that mainly encode the same type of 

information [16]. FFD seeks to select variables that 

increase predictive ability significantly (using the 

paradigms of LOO) and can operate on both single 

variables or groups identified by a previous SRD run, 

thereby eliminating groups of uninformative variables as 

performed in GOLPE [17]. To achieve a connection 

between the descriptors derived from CoMFA 

(independent variables) and pIC50 values, PLS analysis 

implemented in Open3DQSAR was used to (dependent 

variable). Through the Non-linear iterative partial least 

squares (NIPALS) algorithm [18], Open3DQSAR 

generates a PLS model. The overall significance of the 

model was determined by statistical parameters such as 

the determination coefficient (R2), Standard Deviation 

Error in Estimation (SDEC), Standard Deviation Error in 

Predictivity (SDEP), and the F-ratio measure. Also, for 

the steric and electrostatic fields, the CoMFA color 

contour maps are derived. 

 

3.3. Docking Decorum 

The docking of ligands to protein complex was 

performed using Auto Dock/vina software using PyRx as 

GUI [19]. The three dimensional (3D) x-ray crystal 

structure of chlamydia trachomatis DsbA (PDB ID: 

5KBC) was recovered from RCSB PDB 

(https://www.rcsb.org/structure/5kbc). The water 

particles just as co-solidified ligands were removed from 

the PDB file. The protein was loaded in software and it 

was prepared for docking. During this process, the 

protein will be transformed from .pdb format to .pdbqt 

format, a format needed for Auto Dock/vina for docking. 

Similarly, the derivatives (optimized ligands) were also 

loaded and were changed over to the .pdbqt format. 

Before docking, the grid box was placed around the 

binding site so as enable the ligands to bind only inside 

the grid box i.e., in the binding site. After the grid box 

was set, the docking simulations were run for all the 

ligands. The Auto Dock/vina calculates the energy values 

using the Lamarckian Genetic Algorithm (LGA) 

algorithm. A total of ten binding configurations was 

generated for each ligand and were arranged according to 

their root mean square deviation (RMSD) values. The 

binding confirmation ranked one with an RMSD of zero 

was selected as the best in terms of binding energy and 

pose. 

 

3.4. Enzyme grid generation 

The ligand was held in the crystal structure of the readied 

protein which was used for the enzyme grid generation. 

The coupling box measurements of the protein was set to 

exhaustiveness = 8; center_x = -1.1386; center_y = 

27.2208; center_z = -1.7311; size_x = 52.1493; size_y = 

44.4336 and size_z = 54.8482. The output .pdbqt 

collections were written into a configuration (conf) file. 

The enzyme was treated as an inflexible entity whereas 

ligands were kept adaptable to accomplish the best fitting 

confirmation concerning the enzyme/receptor complex. 

The coupling compliance of ligands with the least 

restricting proclivity was portrayed as the steadiest 

adaptation of the ligands to the receptor.  The binding 

conformation of ligands with the lowest binding affinity 

was characterized as the most stable conformation of the 

ligands to the receptor. The visualization tools using 

discovery studio visualizer v17.2 were employed to 

analyze intermolecular chemical interactions such as 

hydrogen bonding, ionic interactions, and hydrophobic 

contacts, and so on. 

3.5. Molecular Dynamics (MD) SimulationsCalculations 

of molecular dynamics (MDs) simulations are conducted 

using VMD [20] and NAMD [21] and CHARMM force 

field [22]. Interaction parameters have been calculated 

using the CHARMM27 force field 

(par_all27_prot_lipid.inp). The protein was solvated and 

was dissolved with explicit water at a concentration of 

0.15mol/L NaCl salt for neutralization. Minimization was 

performed to simplify the original protein structure. To 

confirm the structure to the force field [23], the 

application of solvents and, in particular, to minimize 

steric clashes that may occur in the device [24]. To 

perform the simulation, this procedure supplied the 

computer with the lowest energy. The solvated 

framework was minimized first for 50000 steepest plunge 

technique cycles. After the minimization, it was 

characterized by the achievement of energy convergence. 

From that point onward, the device temperature was 

steadily heated from 0 K to 310 K in 100ps. At the end of 

the day, the system was calibrated at 310 K for 100ps with 

the NVT ensemble. On the DELL; Intel ® Core ™ i5 

CPU M 540 @ 2.53 GHz and 4GB RAM, 64-bit-

Operating System, x64-based CPU, the MD simulation, 
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and analysis results were conducted. In the NAMD 

documentation (www.ks.uiuc.edu /Research/namd/), a 

full summary of the input parameters is given. See 

(www.ks.uiuc.edu/Research/namd /current /ug/) for more 

detail on running MD simulations with NAMD. 

 

4. Conclusion 

    The principles and methods discussed in this research 

highlight the strategies by which 2D-3D QSAR, 

molecular docking, and molecular dynamic simulation 

approaches have been applied in the identification of 

novel bioactive compounds. Our present studies have 

established that the structural features and binding 

mechanism of compound 29 and 31 through Molecular 

Interaction Force Fields (MIFs) studies are quite reliable 

and significant. The CoMFA (UVEPLS) studies indicate 

that the steric and electrostatic interaction plays an 

important role in determining the potency of the 

compounds. Docking on the same simulated A-chain of 

protein reveals that the ligand (compound 29 and 31) is 

bonded to conventional hydrogen bonds, electrostatics, 

and hydrophobic interaction (such as pi-sulfur, pi-alkyl, 

and pi-pi t-shaped). Moreover, the ligand-protein 

complex was used in MD simulation to realize the 

conformation changes of the complex. The total energy, 

temperature, and root mean square deviation (RMSD) 

plot revealed that the complex (compound 31) was stable 

and the conformation of the ligand-protein complex has a 

slight change relative to the protein conformation. From 

the above methods, compound 31 with a molecular 

weight of 509.62 and XLOGP4 of 4.28 have stronger 

potency, stability, permeability, and oral absorption 

compared to compound 29 with a molecular weight of 

520.57 and XLOGP3 of 5.89. From these studies, we 

have added valuable information into the factors 

governing the potency of the Chlamydia trachomatis 

inhibitors. 
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