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1. Introduction 

      Adsorption is a very popular technique for 

the sequestration of pollutants such as dyes from the 

environment [1-4]. To obtain the optimum result in any 

adsorption study, the understanding of the following 

properties of the adsorbent is required: surface chemistry, 

hydrophilicity, physiochemical properties, proximate 

analysis, morphology, crystalline structure, and textural 

properties (pore size, pore volume, surface area, and pore 

surface) [5]. These characteristics are important in the 

selection of adsorbents for specific pollutants [6, 7]. The 

pore size of an adsorbent can be described as the gap or 

stretch of its pores. The pore size of adsorbents can be 

divided into three main groups as stated by the 

International Union of Pure and Applied Chemistry 

(IUPAC);  micropores have pore sizes that are less than 2 

nm, mesopores have pore sizes of 2-50 nm, and 

macropores have pore sizes greater than 50 nm [8-11]. 

The specific surface area (SSA) is also one of the most 

important properties of adsorbent material as it indicates 

the necessary active sites for adsorption because 

adsorption is a surface phenomenon [12-14]. The surface 

area is directly proportional to the adsorptive 

performance of the material [15, 16]. 

Adsorption modelling is a very important aspect 

of any adsorption study as it applies adsorption models 

for the interpretation of experimental data to obtain useful 

information that would aid in the understanding of 

process mechanisms, process equilibrium-dynamics, 

predicting answers to operational condition changes and 

optimizing the adsorption process [17, 18]. Common 

models used for understanding adsorption studies better 

are thermodynamic models, isotherm models, and kinetic 

models [3, 19-21].  

The time at which equilibrium is obtained is an 

important feature of any adsorption study. The kinetics of 

any adsorption reaction gives more information on the 

rate at which the adsorbate is taken up by the adsorbent, 

which is responsible for the residence time of the 

adsorbate uptake at the adsorbent-aqueous phase 

interface [17]. The adsorption kinetics also gives more 
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information on the mechanism as well as a pathway for 

the reaction [22, 23]. The most common kinetic models 

used in adsorption studies, which are classical models 

that fit adsorption data well even with non-linear 

methods, are the pseudo-first-order (PFO) and pseudo-

second-order (PSO) models. The PFO model assumes 

that the adsorption process is dependent only on the 

concentration of adsorbate in the solution that is present 

at a specific time, while the PSO model assumes that 

adsorption is a complex physico-chemical process that is 

dependent on the concentration of the adsorbate present 

in the system as well as the number of active sites on the 

adsorbent [24-26]. 

Methyl Orange (MO) (IUPAC: Sodium 4-([4-

(dimethylamino) phenyl]diazenyl) benzene-1-sulfonate) 

is a sulfonated azo anionic dye that is widely used as a pH 

indicator in acid titrations and as a textile dye [27-29]. It 

has a molecular formula of C14H12N3O3NaS and a 

molecular weight of 327.34 g/mol. It is soluble in water 

and its density and melting point are 1.28 g/cm3 and > 300 

℃ [30, 31]. The molecular size of MO is 1.19 nm × 0.68 

nm × 0.37 nm. It has a dissociation constant (pKa) of 3.47 

in water at 25 ℃ [32-34]. MO is a toxic compound that 

deteriorates water quality and has been banned for use in 

food products because it is a carcinogen and teratogen 

due to the presence of aromatic and –N=N- groups 

inherent in its structure, as shown in Figure 1 [34, 35]. It 

usually gets into the environment in large quantities 

through the effluent of textile industries. Different 

techniques have been utilized in the removal of MO from 

the environment. They include electrocoagulation [36-

39], ozonation [40-42], biological treatment [43], photo-

degradation [44-46], membrane processes [47], and 

adsorption [48-50]. Due to the low cost and efficacy of 

adsorption, it is considered one of the best methods for 

the removal of MO dye from the environment [51-53]. 

 
Figure 1. Chemical structure of methyl orange 

This study is aimed at determining the 

relationship between pore size as well as specific surface 

area (SSA) on the kinetics of the uptake of methyl orange 

(MO) through the PFO and PSO kinetic models. 

Empirical findings obtained were analysed and 

juxtaposed to obtain observations. The reason for using 

MO in our study is its popularity as a pH indicator as well 

as a textile dye [54, 55]. The results of this study would 

be able to enable researchers to better understand the 

adsorption process of MO. 

 

2. Results and Discussion 

 2.1Statistical analysis of the data  

From Table 1, the pseudo-second-order kinetics was best-

fit in most of the cases. Hence its kinetics constant (𝑘2) is 

the selected basis for this investigation. Firstly, before the 

data can be used for this analysis, we first need to verify 

if there is any statistical relationship between the pore 

size and specific surface area against the kinetic constant. 

This was done by the one-way ANOVA and descriptive 

statistics such as CV, R2 and RMSE. From Table 2, 

statistical significance (at a threshold of Prob > F being 

0.05) was achieved for SSA but not for pore size. What 

this simply means is that a holistic consideration of the 

data revealed specific trends between SSA and the 

kinetics constant while this was not so for the case of pore 

size. It is also unsurprising that the descriptive statistics 

are also correspondingly poorer for pore size. This does 

not however invalidate the data since the statistical 

significance only verifies if the results in the dataset are 

due to chance or some specific factors. A more theoretical 

perspective will be needed to properly consider the data. 

 
Table 2. One-way ANOVA and descriptive statistics of the 

factors on 𝑘2 

Result SSA 

F – value (One-way ANOVA) 4.33 × 1010 

Prob > F (One-way ANOVA) 2.31 × 10-11 

Coefficient of determination (R2) 1.000 

Coefficient of variance (CV) 3.79 × 10-5 

RMSE 0.00752 

 

2.2 Theoretical consideration of the effect of pore 

size on MO adsorption kinetics 

 Empirical evidence cannot be summarily 

dismissed due to a lack of a statistical relationship. 

Statistics try to evaluate trends based on a holistic 

computation of the dataset. This does not consider some 

known theoretical understanding of adsorption. For this 

case, we are considering the 2 nm pore size threshold. 

This will be used to differentiate between the micropore 

and the mesopore. Based on this, we can then summarise 

the data as shown in Table 3. Considering magnitudes, it 

is observed that the kinetics for micropores is far higher 

than for the two selected regimes of the mesopore. We 

believe this is a bias induced by the uncharacteristic 

results obtained by Chaukura, et al. [56] for 

Fe2O3/biochar adsorption of MO. If this value is 

excluded, we still obtain a mean 𝑘2 value of 34.1 which 

is still significantly higher than for mesopores. The 

molecular size of MO is 1.19 nm × 0.68 nm × 0.37 nm. 

This dimension suggests that it would quickly fill up a 

pore with an average diameter of 2 nm as opposed to 
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larger mesopores. This quickness is what is captured by 

the rate constant.  
 

Table 3. Variation of pore size with mean 𝐾2 values for MO 

adsorption 

Regime Pore size 

(nm) 

Mean 𝑲𝟐 

(g/mg.min) 

Mesoporous 50 – 10  0.3659 

Mesoporous 10 – 2 0.6788 

Microporous < 2 919.3 

 

2.3.Theoretical consideration of the effect of SSA on MO 

adsorption kinetics 

 In this section, we investigate the possible effects 

of SSA on MO adsorption kinetics. A simple summary of 

the results is presented in Table 4. For the SSA, 100 – 10 

m2/g adsorbents had a higher mean 𝑘2 value. This 

suggests that adsorbents in the SSA range had pore sizes 

that favoured rapid uptake (which we have already 

observed to be micropores). The SSA of a material is only 

closely related to its total pore volume. Pore diameters are 

controlled more by the method and parameters of 

adsorbent preparation than by the intrinsic nature of the 

feedstock. Hence, further studies will be needed to gain a 

better understanding of how SSA affects the adsorption 

kinetics (if at all it does). 
Table 4. Variation of SSA with mean 𝐾2 values for MO 

adsorption 

SSA (m2/g) Mean 𝑲𝟐 (g/mg.min) 

3000 – 1000 17.49 

1000 – 100 12.52 

100 – 10 460.5 

10 – 0 0.1616 

 

2.4.Technical issues with kinetics modelling 

 In this section, we discuss the technical issues 

around the modelling of adsorption kinetics, albeit from 

a mathematical perspective. In Table 1, we reported the 

technique used by various studies for modelling 

adsorption. A majority of the studies used the linear 

modelling technique while others employed non-linear 

modelling. Tran, et al. [5] explained that the kinetics of 

adsorption can be very rapid. In some cases, over 90% of 

the adsorbate can be removed within the first 5 minutes 

of the process. Most experiments usually employed a 

protracted contact time because the adsorption process 

becomes significantly less rapid as equilibrium is 

approached. Simonin [57] has explained that serious 

biases that favour the PSO model are created because of 

this extended portion of the contact time when kinetics is 

slow and equilibrium is close. Such vast differences in 

adsorption kinetics can be difficult to capture by a 

linearised model. This led to the issues raised by Lima, et 

al. [58]. Lima, et al. [58] observed that researchers seem 

too confident in employing linear techniques because of 

their perceived similarity with non-linear modelling 

when comparing their R2 and adjusted R2. This did not 

take into cognisance the dissimilarities and 

inconsistencies in the obtained rate constants [59-64]. In 

some scenarios, studies with PFO as best-fits were 

erroneously assigned as having PSO as best-fit. It is by 

consequence not surprising that most of the studies in 

Table 1 have the PSO as best-fit.  Besides the use of just 

the R2 for determining goodness of fit, Aniagor, et al. [25] 

recommended including other accuracy statistics in 

making this decision (which are still not commonly 

employed in literature in this respect). Increment in the 

degree of freedom of a given kinetics data set will 

unfairly favour the model fit. Hence this suggestion. 
 

3. Experimental  

3.1.Data Collection and description 

For our study, published works of literature on 

the adsorption of Methyl Orange were obtained from the 

Google Scholar search engine. The search was restricted 

to articles published in the past five years (2016 - 2021) 

and which reported the pore size of the various adsorbents 

used. Based on the nature of the data, adsorbent of 

macropores size is unavailable for MO adsorption hence 

the study would focus more on micropore versus 

mesopore. Data on SSA was also added from articles 

where it was reported as shown in Table 1. The kinetic 

models used in this study was restricted to the PFO and 

the PSO models. The K values of the models were 

reported based on which of them was best-fit from the 

authors’ modelling study. The most widely reported 

index of kinetic modelling accuracy (being the coefficient 

of determination, 𝑅2) was also reported. The modelling 

techniques were reported too, L being for linear 

modelling and NL being for non-linear modelling. 

 

3.2.Research Problem 

To verify the effect of pore size on adsorption 

kinetics, the data were analysed in a variety of ways. The 

key goal was to evaluate how pore size and SSA relates 

to the kinetic constants. The kinetic constant was used as 

the basis of the investigation because it is in the true sense 

an empirical constant. Hence comparison can be made 

across studies using it which extricates other adsorption 

factors. Furthermore, only methyl orange was used 

because it also helps to narrow down the factors by 

eliminating the effects of adsorbate properties on the 

solution chemistry. The study will try to evaluate if there 

was there a relationship from empirical investigations 

between pore size and SSA against MO uptake kinetics. 

The study also discusses the influence of the modelling 

technique (whether linear or non-linear) on adsorption 

kinetics [65].  
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Table 1. Data on MO uptake pore sizes, SSA and kinetic constants 
Adsorbent Name Average 

Pore 

Size 

(nm) 

SSA 

(m2/g) 

𝑲𝟏 

(1/min) 

R2 𝑲𝟐 

(g/mg.min) 

R2 Modelling 

type 

Ref. 

ZnO nanostructure 51.60 7.780 - - - - - [66] 

LDH/Fe3O4/polyvinyl alcohol  42.00 87.00 - - - 0.9750 L [67] 

Chitosan/ethylene glycol diglycidyl ether biofilm 27.62 0.820 - - 0.0006 0.9900 NL [68] 
Goethite/chitosan beads 26.18 17.81 - - 0.0003 0.9965 - [69] 

Flower-like NiAl LDH 23.30 133.0 - - 0.0058 0.9990 NL [70] 

Starch-modified ZnMgAl LDH 23.10 76.80 - - 0.00007 0.9999 NL [71] 
Biochar from waste walnut shells/TiO2 22.70 66.06 - - - - - [72] 

Polyethyleneimine-modified persimmon tannin 19.54 8.130 - - 0.0047 0.9994 L [73] 

[Cu(L)2(H2O)H2(Cu(L)2(P2Mo5O23)].4H2O/Fe3O4 19.43 - - - - - - [74] 
Au/Cu2O  18.30 16.00 - - - - - [75] 

Bi2O3/TiO2/powdered AC 17.60 83.30 - - 5.9620 1.0000 - [76] 

Chitosan beads 16.69 10.81 - - 0.0003 0.9939 NL [69] 
Co3O4 nanocube/polyaniline 15.57 43.00 - - 0.0006 0.9990 L [77] 

Blast furnace slag acid-alkaline precipitate 15.40 3.450 - - 0.1590 1.0000 L [78] 

Immobilized polyaniline 14.70 8.500 - - 0.0800 0.9900 L [79] 

Graphene oxide/NiFe LDH  14.60 145.0 - - 0.0006 0.9990 NL [80] 

Polyaniline nano-adsorbent 13.82 10.44 - - 0.0483 0.9447 NL [81] 

Polyanilined-based nanoadsorbent 13.82 10.34 - - - - - [82] 

Fly ash 13.54 1.180 -  - - - [83] 
Trimeric surfactant-modified NA montmorillonite 13.41 7.750 - - 1.0230 0.9988 L [84] 

Mesoporous ZIF-67/LDH 13.24 172.3 - - 0.0002 0.9998 L [85] 

Silver NP/zeolite X 12.42 552.6 0.3050 0.9820 - - L [86] 
Hydrotalcite-like modified bentonite 12.13 83.24 - - 0.0050 0.9990 NL [87] 

Magnetic lignin-based CNPs 12.00 82.80 - - 0.0008 0.9992 L [88] 

CuO NPs 11.61 6.188 - - 0.0244 0.9980 L [89] 
NiFe LDH nanoflakes/montmorillonite 10.70 103.9 - - 0.0017 0.9980 NL [90] 

Goethite 10.24 4.370 - - 0.0004 0.9953 NL [69] 

Calcium ferrite/zirconia 10.18 95.32 - - 0.0001 1.0000 L [91] 
CuO nanostructures 9.000 24.10 - - - - - [92] 

MgAL-LDHs nanosheets 8.870 65.94 - - - - - [93] 

Dimeric surfactant-modified NA montmorillonite 8.830 10.72 - - 1.4510 0.9889 L [84] 
Date palm ash/MgAl-LDH 8.730 140.7 - - 0.0013 0.9990 NL [94] 

Catechol/amine resin 8.590 13.13  - 0.0007 0.9997 L [95] 

CoFe LDH 8.400 108.8 - - - - - [96] 
CuAl LDH 7.358 - - - - - - [97] 

Cetyltrimethylammonium bromide/H2O2-clay 6.804 21.16 - - 0.0250 0.9999 L [98] 

Bismuth nitrate NP 5.850 5.290 - - - 0.9998 L [99] 
Chitosan/Fe(OH)3 beads 5.710 10.20 - - 0.0068 0.9998 L [100] 

Manganous(ll) ions-based MOF 5.619 - - - - - - [101] 

Mesoporous carbon 5.300 2944 - - 0.0002 1.0000 L [102] 
TiO2/aluminosilicate zeolite (ZSM-5) 5.200 1151 - -  0.9994 L [103] 

Mesoporous carbon nanofibers 5.000 392.3 - - 0.0002 0.9967 L [104] 

ZnO/polyaniline 5.000 63.17 - - 0.0012 0.9990 L [105] 
γ-Fe2O3/2C nanocomposites 4.965 394.1 - - 0.0024 0.9996 NL [106] 

MOF-derived nanoporous carbon 4.770 1731 - - 0.0011 0.9937 NL [107] 
Cd-zeolite imidazolate framework (Cd-ZIF-8)  4.700 1281 - - 0.0080 0.9900 NL [108] 

Nitrogen-doped porous carbon 4.200 1259 - - - - - [109] 

Porous ZnO spheres 4.150 114.6 - - - - - [110] 
Al-doped CNTs 3.820 118.8 - - 0.0044 0.9990 NL [111] 

Stone-like NiAl LDH 3.800 90.00 - - 0.0015 0.9900 NL [70] 

Nanoporous carbon 3.700 814.0 - - 0.1490 0.0760 L [112] 
NiO NPs 3.492 78.37 - - 0.0002 0.9900 L [89] 

AC from sugarcane mills boiler residue  3.372 1073  - 0.0001 0.9923 L [113] 

CoAl/Cl LDH 3.344 19.70 - - 0.0002 0.9890 NL [114] 
Mesoporous MCM-41 3.280 1451 - - 0.0057 0.9995 L [115] 

p-CNTs/N,N-diethylethanol ammonium chloride 3.009 169.7 - - 0.0001 0.9900 L [116] 

Nitrogen-doped mesoporous carbon 3.000 968.0 - - - - - [117] 
NDA88 MOF/Cu 2.990 370.4 - - - - - [118] 

Calcinated organic matter-rich clays from Egypt 2.988 48.32 - - 0.0370 0.9999 L [119] 

Organic matter-rich clays from Egypt 2.930 59.14 - - 0.0940 1.0000 L [119] 

Fe2O3/Mn3O4 magnetic nanocomposites 2.870 178.3 - - 0.0003 0.9998 L [120] 

Copper sulphide NPs/AC 2.840 1286 - - 0.0300 0.9900 L [121] 
Magnetic nanoporous Fe/MCM-41 2.840 1216 - - 0.0057 0.9995 L [115] 

Ni-Co-S/hexadecyltrimethyl ammonium bromide 2.780 12.73 - - 0.0237 0.9962 NL [122] 

Fe3O4/AC 2.750 1200 - - 18.950 0.9999 NL [123] 

Organosilica 2.700 10.00 -  0.0001 0.9860 NL [124] 

AC from popcorn 2.580 3291 - - - - - [125] 

AC from coconut shell 2.520 1640 - - 0.2266 0.9959 L [126] 
AgGaO2 nanocomposites 2.500 23.35 - - - - - [127] 

p-CNTs/chlorine chloride 2.413 197.8 - - 0.00003 0.9900 L [116] 

Nickel hydroxide catalysts 2.400 87.00 - - - - - [128] 
Nano ZnO/mesoporous silica 2.176 849.0 0.0182 0.9931 - - L [129] 
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Chitosan/Al2O3/Fe3O4 2.122 21.87 - - 0.0173 0.9997 L [130] 
Non-functionalized CNTs (p-CNTs) 2.049 123.5 - - 0.00004 0.9900 L [116] 

TiO2/slag-made calcium silicate 2.030 149.0 - - - - - [131] 

Carbon nanostructure from Bengal gram bean husk 1.940 1710 - - 00243 1.0000 L [132] 
Pomelo peel-derived porous carbon 1.920 1892 - - 0.0022 0.9939 L [133] 

Polyaniline/AC 1.840 36.00 - - 0.0002 0.9996 L [134] 

Polyvinylene fluoride/PEDOT mats 1.807 5.691 - - 0.0004 0.9990 NL [135] 
Mg NP/modified nanosized Si2-Al2O3 1.800 101.0 - - 0.1690 0.9990 NL [136] 

NiFe LDH 1.800 17.85 - 0.9998 - - L [137] 

Nitrogen-doped nanoporous carbon 1.730 1152 - - 0.0810 0.9980 L [138] 
UiO-66 MOF 1.700 1276 - - 0.0062 0.9990 L [139] 

Fe2O3/biochar 1.700 15.30 - - 12427 0.9990 L [56] 

Ag-N-ZnO/coconut husk AC 1.350 472.0 - - 0.0037 0.9862 NL [140] 
TiO2/pure calcium silicate 1.340 126.0 - - - - - [131] 

Tungstosilisic acid/zeolites 1.000 362.0 - - - - - [141] 

Activated biochar from pemelo peel waste 0.940 75.32 - - 0.0007 0.9840 L [142] 

Al-doped MOF/grapheme oxide 0.600 1309 - - 0.0060 1.000 NL [143] 
Cd-based MOF 0.246 384.0 - - 200.00 0.9990 L [144] 

N-acyl thiolated chitosan 0.214 10.00 - - 0.0150 0.9999 NL [145] 

Salecan polyssacharides 0.109 - - - - 0.9941 L [146] 

Mesoporous MCM-41/microfiltration membrane 0.0002 1451 - - 0.0078 0.9998 L [147] 

 

3.3.Data. analysi 

Statistical analysis of the data was done using 

one-way analysis of variance (ANOVA) and descriptive 

statistics such as coefficient of variance (CV), coefficient 

of determination (R2) and root mean square error 

(RMSE). This analysis was done using Origin Pro 2017 

(OriginLab Co., Wellesley, MA, USA). Other analyses 

for the determination of means was done using Microsoft 

excel 2016 (Microsoft Inc., Redmond, WA, USA). 

 

4. Conclusion 

Some unique observations were derived from 

this study, albeit MO adsorption. ANOVA of the data 

revealed that statistical significance (at a threshold of 

Prob> F of 0.05) was achieved for SSA but not for pore 

size. This does not, however, invalidate the data since the 

statistical significance only verifies if the results in the 

dataset are due to chance or some specific factors, thereby 

requiring a more theoretical perspective. It was 

discovered that the kinetics of micropores are far greater 

than those of the two selected mesopore regimes.Based 

on the molecular size of MO, the compound would 

quickly fill up a pore with an average diameter of 2 nm 

as opposed to larger mesopores. This quickness is what is 

captured by the rate constant. For the SSA, 100–10 m2/g 

adsorbents had a higher mean value. This suggested that 

adsorbents in the SSA range had pore sizes that favour 

rapid uptake (which we have already observed to be 

micropores). However, further studies will be needed to 

gain a better understanding of how SSA affects the 

adsorption kinetics (if at all it does). 
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