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1. Introduction  

Machine Learning (ML) is a technique that enables 

computers to address challenges via data learning [1]. 

Deep structural learning (deep learning), as a part of a 

larger machine learning family, is based on the artificial 

neural networks (ANN) with representation learning. The 

relationship between Artificial intelligence (AI), machine 

learning, and deep learning (DL) has been shown in 

Figure 1 [2]. 

 
Figure 1.  deep learning as a subset of machine learning and 

machine learning as a subset of artificial intelligence [2] 

 

The majority of works in this area can be categorized into 

three main classifications (i.e., supervised, unsupervised, 

and semi-supervised) [3]–[5]. Figure 2 shows their 
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architectures which apply in various fields such as speech 

and audio recognition, machine and computer vision, 

natural language processing, drug design, material 

inspection, medical image analysis, game programs, 

social network filtering, and bioinformatics. In these 

applications, DL produces results near to human expert 

performance and, surprisingly, the results in some 

examples are better than them [6], [7]. 

 

 
Figure 2.  The architectures of deep learning [6], [7] 
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In a broad problem range such as density, viscosity, 

band gap, atomization energy, and glass transition 

temperature, ANN-based techniques have displayed 

promising results after the beginning of this technique in 

the 1950s [8]. The main difference between biological 

brains and ANNs is that the first one is analog and 

dynamic, while the other one is symbolic and stationary 

[9]. Researchers used DL approach in a broad chemical 

challenge, including materials and drug design, synthesis 

planning, and computational chemistry development. In 

computational chemistry development, Siadati et al. [10-

13] and Vessally et al. [14] have achieved successful 

results. Using the hierarchical recombination of 

properties, DL can extract relevant information and 

learns the represented patterns in the data. Mater et al. [1] 

also reviewed the various applications of deep learning in 

chemistry to encourage the broad chemical society to 

engage with this modern field. The “deep” adjective in 

the deep learning technique originates from the usage of 

multiple layers in the system. As a novel variation, DL 

not only allows an optimized implementation and a 

practical application but also is able to retain the 

hypothetical universality under mild conditions. This 

technique applies various layers to extract high-level 

characterizations from the raw input. This can be revealed 

in the image-processing field, where low layers can 

recognize edges and high layers can recognize human-

related features, including letters, faces, or digits [15]. 

Moreover, during recent decades, convolutional neural 

networks (CNN) have achieved popularity as a strong 

approach to solve different technical problems such as 

driverless cars, style transfer, medical image recognition, 

and face recognition. Coupled with special activation 

functions and fully connected layers (FCL), ANNs have 

the ability to extract the important data 

(characterizations) from a determined dataset and then fit 

them to the desired feature as output during training. 

Following this, these networks can generalize the result 

of the other input information, which was formerly 

unrevealed. [8] Many repeated units, namely monomers, 

can be connected to build polymers, as one of the most 

significant materials in the modern society whose 

applications are diverse, from plastic bottles and bags to 

structural and electronic components in aerospace 

industries. Polymer design consists of three steps, 

including the monomer design, microstructure design, 

and material processing. These three steps can be called 

polymerization, crystallization, and manufacturing, 

respectively [16]. The majority of traditional design 

techniques to synthesize polymeric materials are 

experimentally driven. The AI-based digitalization of the 

design and synthesis optimization of polymer metals and 

their composites is the beginning of the way. Moreover, 

the material design using AI is a promising tool to expand 

breakthroughs in the bioengineering of polymer 

composites/nanocomposites (PCs /PNCs). As special 

ANNs, deep neural networks (DNNs) can offer a 

reasonable design for secure and more effective PCs [17]. 

The progress of better mechanical features, as well as 

variable functionalities, is a necessity for modern 

engineering applications. Hence, the composite design 

with superior efficiency can be considered as an essential 

factor in the material development sector. The 

combination of two or more raw materials in special 

architectures can lead to the production of composite with 

distinctive and spatially different features. Different 

traditional composite designs are not able to guarantee 

the global optimized design because of the immense 

numbers of freedom degrees and their various 

computational limitations. ML, which employs different 

probabilistic, statistical, and optimization approaches, 

enables computers to learn from the previous experience 

and recognize hard-distinguished patterns from 

complicated, noisy, and large data sets. Using this 

technique, researchers can overcome the limitations 

regarding conventional composite designs. In spite of the 

recent widespread influence and extensive application of 

ML, only a limited use of this technique for composite 

design has been recently reported [18]. 

 

2.  DEEP LEARNING APPLICATIONS IN 

POLYMER AND POLYMER COMPOSITE FIELD 

There have been some comprehensive review papers 

regarding AI-based applications in polymer technology 

[19-21]. However, we try to focus on the DL-based ones 

and cover the PCs in this study due to their importance in 

modern technology. Moreover, we categorized every 

related application of the DL in the polymer and PC field 

in one DL technique. This would help researchers realize 

the importance of every technique based on the 

mentioned applications and, more importantly, they can 

find which DL technique can outperform the other 

techniques according to the demand. These 

categorizations are introduced in Figure 3 and the most 

important DL applications in polymer and PC field are 

outlined in Figure 4. Moreover, the system 

characterizations of some referenced researches, 

including dataset, libraries/ platforms, input and output 

layer nodes, hidden layer numbers, activation, loss 

function, dataset size (training and validation test), 

accuracy and their optimizer are outlined in Table 1.  

2.1. Deep neural network 

It is found that there are more than thousands of 

connections between tens of millions of neurons in the 

human brain. The NN consists of the input, hidden and 

output layer in which each layer is composed of different 

neurons, and the hidden layer is composed of many layers 

(Figure 5). The number of neurons numbers in the output 

layer of the NNs can be different based on various task 

kinds. In a three-classified problem, for example, there 

are three neurons in the output layer, each of which can 

represent the possibility of belonging to a specific 

classification.  
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Figure 3.  Different deep learning techniques used for polymer and polymer composite materials 

 
Figure 4.  Deep learning in polymer and polymer composite technology  
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Figure 5. A NN architecture consisting of the input, hidden 

and output layers [22] 

The calculation of a neuron in the hidden layer, as an 

example, is displayed in Figure 6. 

 

Figure 6. Equation for the neuron calculation: y=f(∑jwijxj∗) 

Y:the output of the neuron, wij: the weight of the jth input and 

the ith neuron, xj: the jth input of the neuron, bi: the bias of 

the ith neuron, f: the activation function to fulfil a nonlinear 

transformation on the neuron output. ReLU, softmax, tanh, 

etc. can be considered as the most common activation 

function. [22] 

NNs enable us to classify and cluster the means that we 

can consider as a classification and clustering layer on top 

of the data that can be managed and stored. When there 

is a labeled dataset to train on, they classify data and help 

to group the unlabeled data based on the similarities 

between the example inputs. DNNs are stacked neural 

networks: the networks consisting of several layers made 

of nodes.  

According to the prior layer’s output, every nodes’ layer 

trains on a definite set of features. The further you 

advance into the NNs, your nodes can recognize the more 

complex features as they collect and recombine features 

from the prior layer. [23] 

A polymer structure factor, as a quantifiable physical 

feature, which indicates the density–density relationship 

can be studied both theoretically and experimentally. The 

main properties of polymers, including chirality, 

polymerization degree, and rigidity are analyzable when 

the structure factor fits with the scattering data through 

experiment. For Gaussian chains, this value can be 

calculated analytically, while numerical techniques, 

including Monte Carlo simulations (which can modify 

diffusion equations) are usually applied for wormlike 

chains. Wormlike chains can be taken into account as one 

of the most excellent semi-flexible chain models. 

 This is so because there are dissimilar regions of the 

chain rigidity and wave vector for these polymers. Thus, 

the structure factor has to be solved differently for them, 

and some computation processes are resource consuming. 

However, researchers do not require to detect structure 

factors by guessing the analytical formula if they apply a 

neural network to substitute it. Huang et al. [24] 

calculated the structure factor of a wormlike chain 

polymer via training a deep neural network. In this study, 

they did not consider the various regions of the chain 

rigidity and wavenumber. Using the experimental data of 

scattering and based on the trained neural network, they 

also predicted the Kuhn and contour lengths of some 

polymer chains. Their model is extremely compatible 

with the prior calculations in analytical and numerical 

approaches. Hence, this model can be a great tool for 

experimental researchers to explore the features of 

polymer chains. 

The importance of polymer solubility, as another polymer 

feature, has been proven for different researchers and 

industrial applications, including drug delivery, plastics 

recycling, and membrane science. However, finding a 

suitable solvent for the dissolution of novel polymers is 

still challenging. One solution is polymer parameters 

examination to identify the suitable solvent for the 

polymer. However, this remains a solution and is not an 

applicable case. To develop a new data-driven model for 

polymer-solvent selection. Chandrasekaran et al. [25] 

used a deep learning approach to design a network. As 

depicted in Figure 7, this network takes a pair of polymers 

and solvent / non-solvent as the input and output of 
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predicting whether the proposed solvent is suitable for the 

polymer at the room temperature or is a non-solvent. For 

this purpose, the network was trained on a dataset 

containing 4,500 data pairs. Then, in the test phase, some 

hidden data pairs are given to this trained network to test 

its suitability. Following this, they see if the network can 

correctly determine the compatibility of each solvent with 

its corresponding polymer in that data pair or not. Based 

on their results, the proposed network can correctly 

predict the suitability of solvents in 93% of data pairs 

during the testing step (Table 1)

 

 

Figure 7. The architecture of the NN to predict the non-solvents and good solvents [25] 

Recently, Frontal Polymerization (FP), has been 

introduced as an efficient technique to save energy and 

time for the production of Fiber-Reinforced Polymer-

matrix Composites (FRPCs).  

These polymer composites are significant polymers for 

automotive, aerospace, energy industries, and marine. 

However, the cure kinetics parameters of a thermoset 

polymer, as the matrix phase, can bring challenges to the 

process design and control. In a study conducted by Goli 

et al. [26], 

 one of the most efficient deep learning networks for 

Advanced Composites Manufacturing, ChemNet, in 

combination with FP was used to build these composites. 

ChemNet, consisting of nine fully connected layers of 

feed-forward type, is used to predict and optimize the 

parameters related to cure kinetics. 

 These parameters include enthalpy and reaction 

activation energy for a favorable fabrication approach. 

They trained the model by preparing input data via 

normal distribution and output data derived from the 

steady-state solver. This solver helps them prepare an 

immense data set serving to train their suggested 

ChemNet. Using this model, in the end, an inverse 

method was applied for the prediction of the cure kinetic 

parameters for a given front feature. 
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 The fiber volume fraction and the resin chemistry have 

been chosen by them to focus on their critical role to 

adjust the product application as well as the fabrication 

time.  

To customize and optimize the resin chemistry, 

particularly, they tailored its cure Kinetics parameters in 

a manner to achieve the followed results: Guarantee the 

favorable fabrication time and satisfy the application 

demand in terms of the needed fiber volume fraction.  

High-throughput computational screening can be 

considered an important step in material development 

because it can examine the large areas of chemical space 

for special functionalities [27]. Although chemical 

accuracy has been sacrificed for numerical efficiency in 

density functional theory (DFT), it is not fast enough fast 

to represent the broad combinatorial landscape of 

possible chemical structures [28].  

Recently, ML, a faster alternative to comprehensive 

calculations of quantum chemistry, has been introduced 

as an effective method for the reproduction of DFT 

results with enough training data. Hence, much larger 

compound libraries can be screened without a further 

decline in chemical accuracy via this technique [29]. 

Graph-based neural network architectures have been 

introduced as the most promising technique for prediction 

according to the molecular structure. However, these 

systems need optimal three-dimensional (3D) structural 

data of the molecules to obtain the greatest level of 

accuracy.  

In a study carried out by John et al. [30], they developed 

a new database of selected molecules for organic 

photovoltaic (OPV) polymers and applied a message-

passing neural network (MPNN). MPNN is an end-to-end 

learning technique, in which input charts with edge and 

node features make the predictions.  

 

Comparable to the current datasets, the provided data set 

not only possesses completely larger molecules (more 

than 200 atoms) but also includes extrapolated features 

for polymers with a long chain. They displayed the fact 

that for the types of the intended molecules, trained 

MPNNs with 3D structural data could present the same 

performance and accuracy compared with the trained 

models without 3D structural data. These results 

indicated that for larger molecules, almost optimum 

prediction results are achievable without applying 

optimized 3D geometry as the input. In fact, they 

concluded that a pre-trained DNN on one DFT functional 

can improve the prediction ability on a relevant DFT 

functional, particularly in the case of restricted data. 

 

2.2. Bayesian deep learning 

The Bayesian technology, which presents a way to update 

our previous information about the model parameters, 

applies Bayes’ theorem. This theory is according to the 

idea that there may be previous information (belief or 

knowledge) about the distribution of a parameter value 

prior to taking a sample of observations [31]. During the 

recent decades, researchers have broadly developed 

safety assessment techniques based on Bayesian analysis 

and applied them in the chemical process field. To 

overcome the shortages of traditional approaches such as 

fault tree in the absence of the application of dynamic 

safety analysis, Bayesian network and hierarchical 

Bayesian analysis would be efficient [32].  

Process systems can be the complicated socio-technical 

systems liable to disastrous events due to the 

instrumentation, mechanical and human dangers that 

exist in these systems. The management of uncertainty 

can play an important role in the prediction of any process 

disorders. This can lead to a reduced emergency response 

time to decrease the harshness of the result. Researchers 

introduced Grid of Resilience Analysis to introduce a 

well-known system characterization managing the 

systems and improve its capability for strong 

performance. Resilience engineers examined the 

Columbia disaster and, based on their conclusion, the 

perspective of resilience will provide anticipation 

regarding the variable risk patterns prior to the 

occurrence of harm or failure, unexpected or expected 

disturbance. Using Bayesian deep learning via the virtue 

of the Markov Chain Monte Carlo (MCMC) simulation 

in a recent study, Jain et al. [33] developed a framework 

of process resilience analysis. Their technique possesses 

the following features: non-expensiveness, dynamism, 

being data-driven, integration, quantitative state, system-

based nature, and uncertainty management. Avoidance 

(initiating events), survival (propagation events), and 

recovery events are the three phases of this new 

framework that can cover the general anatomy of a 

process disturbance (Figure 8a). They developed three 

statistical models for three uncertainties, namely reactant 

mischarging, cooling average temperature, and agitator 

failure. The bath process of Ploy vinyl chloride (PVC) 

suspension polymerization has been selected because the 

polymerization process is the main process that 

contributes to the reactions of the thermal runway. The 

flow diagram which displays the steps taken to calculate 

the parameters posterior distribution by the Bayes 

theorem is presented in Figure 8b. Using the failure 

numbers from historical data, the majority of existing risk 

evaluation techniques for the rates of failure cannot 

present the real image of the processing system. The 

resultant technique not only is easy to understand and 

perform in the real process system, but also allows risk 

assessors to make risky decisions. This decision-making 

according to their process plant data can lead to an 

effective, profitable, reliable, and secure system of 

process.  
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Figure 8a.   Process Resilience Analysis Framework. There are three principal system states in the system of PVC process, 

including normal operation, catastrophic state and process-upset event. Predictability assessment: error-tolerant design, early 

detection and plasticity/ survivability assessment: plasticity, error-tolerant design/ recoverability assessment: plasticity, 

recoverability). Figure 8b. The steps taken to calculate the parameters posterior distribution by the Bayes theorem in a diagram 

[33]. 

2.3. Deep reinforcement learning 

In Reinforcement Learning (RL), an agent can learn the 

interaction with a specific environment through trial and 

error. A robot or an agent (software or hardware) should 

receive a great representation of its environment before 

selecting an optimal action. The environment 

representation may be obtained or may be given. 

Although, in RL tasks, a human expert often presents the 

environment features according to his/her knowledge of 

the task, this work must be done automatically in some 

applications of the real world. To deal with this challenge, 

there are different solutions, including function 

approximation, Carlo Tree search, and hierarchical 

reinforcement learning.  

The RL agent acquires a reward via acting in the 

environment. Hence, the goal would be learning how to 

choose the actions maximizing the expected reward over 

time. An RL agent could be modeled as a Markov 

decision process (MDP) which can be as a discrete-time 

stochastic control process, providing a mathematical 

framework to model decision making in conditions where 

outcomes are partially under the decision-maker control 

and partially random [34]. 

To enhance sustainability and profitability, scientists are 

making many efforts to apply DL tools to improve smart 

manufacturing, especially in the field of chemical 

processes. In this type of manufacturing, advanced 

computer intelligence can learn the data to make smart 

decisions. Deep reinforcement learning (DRL), as a 

strong option to develop future controllers in production 

industries, is recognized for its supernatural ability in 

control tasks when AlphaGo wins the chess in 

competition with human champions [35], [36]. Machines 

can learn control behaviors through the self-exploration 

of the environment in RL.  

For instance, for a reaction system, the learned approach 

can be achieved from numerical data, which it does not 

need real-time optimization or tuning parameter. This 

adapts the RL to the various control tasks effortlessly 

when the framework is determined. In the polymerization 

reactor control, the trajectory-based scheme of control 

can be considered as a generally applied technique, while 

Automatic Continuous Online Monitoring of 

Polymerization processes (ACOMP), is a strong platform 

for the monitoring of the polymerization reaction. This 

platform provides a real-time evaluation of the significant 

characteristics of polymerization system, markedly 

weight-average molecular mass (MW). Hence, after an 

optimum MW trajectory in real-time, the target Molecular 

Mass Distribution (MMD) can be obtained. MMD can 

dictate different polymeric architectures and the quality 

of the polymeric product, which is merely detected at the 

end of the semi-bath process. Thus,  this makes the 

control of the polymerization process hard for people 

[37]. Online monitoring methods with soft sensors such 

as Raman, optical, and UV/Vis spectroscopy are utilized 

for polymerization reactions as control solutions [38]. 

This has been shown in a study undertaken by 

Ghadipasha et al. [39] in which they applied soft sensors 

to provide an evaluation of MMD and MW in a free-

radical polymerization of the acrylamide–water–

potassium persulfate system. They obtained this aim by 

tracking the MW path in real-time and regulating 

manipulative variables like feed flow rate.  A 

polymerization system controller including optimized 

instructions to regulate the initial flow rate and a 
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proportional-integral (PI) controller to control the flow 

rate of monomer have been built by them.  

An alternative solution studied by Ma et al [37] is the use 

of DRL for controlling the polymerization system via 

modifying both initial and monomer flow rates at the 

same time to follow the optimum trajectory of goal MW 

in a simulative environment. Their results proved the fact 

that the DRL controller successfully learned a great 

control approach in the reaction process and displayed 

excellent potency to handle complex tasks in the 

chemical systems of manufacturing industries. The whole 

methodology of this research has been displayed in 

Figure 9.  

 

 
Figure 9. A reward (rt) is received from the environment (E) at every time step. In the reward function, ⅽ, α , β are constants. By 

inverting the gradient approach, the gradients are inverted when the parameter surpasses the limit of the range and down-scaled if 

they approximate the boundary values. In the equation of the inverting gradients, P indicates the adjusted parameters and Pmin and 

Pmax are the lower and upper boundaries of the parameters. Based on the noise tolerance results, even in the noisy environment, 

the DRL controller can learn the control policy [37]. 

Recently, reinforcement learning advancement has paved 

the way for a computing system to lead vehicles via a 

complicated simulation environment. Again, to regulate 

the shape of polymer molecular weight distributions 

(MWDs) in a study by Li et al. [40], atom transfer radical 

polymerization (ATRP) was used as the simulated 

reaction system. It allows the polymer preparation with 

flexible polydispersity, narrow MWDs, and preplanned 

molecular weights. They normally perform via preparing 

a primary chemical mixture at a constant temperature and 

under other reaction conditions. A higher MWDs 

diversity would be achievable by taking such actions as 

the addition of chemical reagents during the process. 

According to the common reaction state, Li and their 

colleagues applied the DRL technique to decide which 

actions could be taken. This is like a human who 

continually takes actions to guide the reaction towards the 

target MWD, including Gaussian distributions with more 

complex shapes and different widths. The primary 

untrained controller results in ending MWDs with wide 

flexibility, which enables DRL algorithms to examine a 

wide search space. After training by the actor-critic 

algorithm, the RL controller can detect and optimize the 

control approach leading to various target MWDs. The 

trained controller can be transferred from the simulation 

environment to the actual laboratory in a future 

application. A RL problem can usually be expressed as 

an agent, which interacts with an environment. In this 

work, as Figure 10 displays, an ATRP reactor simulator 

and an RL controller are considered as the environment 
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and the agent, respectively. At separated times via 

constant gaps (tstep), the agent interacts with the 

simulation. This interaction consists of three factors, each 

of which is indexed by subscript t. ⅰ) State (St), at every 

timestep ⅱ) Action (At) ⅲ) Reward (Rt), at every 

timestep.  To choose the actions, the state vector is 

applied by the agent. St can be ⅰ) the solution volume ⅱ) 

the non-trace species concentrations: Cu-based ATRP 

catalysts, dormant chains (P1Br,⋯ ,PNBr) and monomer 

ⅲ) double indicators of whether each of the adding 

reagents has reached its budget. The set of actions which 

is fixed throughout the simulation includes the 

enhancement of an unchangeable amount of a chemical 

reagent, a no-operation (no-op), meaning that no action is 

taken on the environment of the reaction simulation. The 

agent may still choose a similar action even when a 

reagent reaches its budget. However, this is a no-op and 

does not change the environment of the reaction 

simulation. The agents acquire a reward merely when the 

reaction is completed, meaning that the reward is based 

on the final MWD. Until all the added reagents have 

reached their budget, the agent is allowed to interact with 

the simulation.  

 
Figure 10. A schematic shape of using deep RL in the reactor 

control setting of the ATRP. The simulation proceeds for a T 

terminal of a 105 seconds, after the all added regents have 

reached their budget.  Then, a reward is provided to the agent 

by simulation environment, which is based on the difference 

between the target MWD and the final dormant chain MWD. 

A structure of the two-level reward is determined empirically. 

The maximum absolute difference between the target MWD 

and normalized ending MWD is less than 1 × 10-2 and the        

reward is 10, the maximum absolute difference between the 

target MWD and normalized ending MWD is less than 3 × 10-

3
 with the reward=1.0. [40] 

 

2.4.  Autoencoders 

Recently, autoencoders, as an unsupervised learning 

ANN algorithm, is involved inside the DNNs, which has 

made the autoencoder concept more broadly applied for 

learning. An autoencoder, which commonly contained a 

hidden layer between the decoder and encoder, learns a 

representation for a set of data, typically decreasing the 

data dimensionality [41]. As it is obvious in Figure 9, in 

this technique, the number of neurons in the output and 

input layers is the same and the number of neurons in the 

hidden layer is less than that in the output and input 

layers. This is useful for data compressing and learning 

efficient features from data. To get a new representation, 

the encoder decreases the original data dimension. Next, 

the input data can be restored through a new 

representation by the decoder. [22] 

The high-dimensional conformation is converted into a 

low-dimensional code via the encoder network. Then, the 

decoder network recovers the configuration from the 

code that is considered as the feature to represent the 

polymer structure (Figure 11). In an autoencoder system, 

therefore, the average square error can be employed 

among the input and decoded output.  The representation 

of the polymer configuration via the code is provided by 

the minimized loss between the original and 

reconstructed data as much as possible [37]. 

 

 

Figure 11.  Schematic diagram of autoencoder network with 

5 layers 

It has been found that brain neural networks are 

structured in 3D space evolving through learning and 

development whereas current 2D crossbar devices have 

been fundamentally optimized for a fully-connected 

neural network leading to an enhancement in unused 

memristors. Considering the fact that the process of 

polymer wire growth can be directly connected to the 

learning action of artificial synapses, Akai-Kasaya et al. 

[41] presented the concrete application of conductive 

polymeric wires to an ANN. Similarly, because the 

presence or absence of synapses between neurons is 

learned by AI techniques, the presence or absence of 

conductive polymer wires between the electrodes in the 

monomeric solution can be learned according to the ANN 

network. To do this, they first trained a simple ANN, the 
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perceptron, with a linearly separable dataset (Boolean 

functions), which included synaptic media and their 

corresponding electrical controller.  

Then, they used an autoencoder to extract features, in 

which 3 × 3 (9 pixels) binary letters are well-compressed 

into 3-pixel data by 54-polymer synapse on an electrode 

collection tip. A poly (3, 4-ethylenedioxy-thiophene) 

doped with poly (styrene sulfonate) anions (PEDOT: 

PSS) has been used as the selected polymer since their 2D 

array, as well as their applications to rudimentary 

nonvolatile synapses, are recently proven. They resulted 

in the great ability of the resistance array of polymer 

wires when the number of wires linking between 

electrodes increased. 

 Surely, their results would be beneficial to extend the 

development concept of space-free synapse, which means 

the extension of 2D synaptic media to 3D.  

The application of the autoencoder system is also 

reported for the polymer configuration identification due 

to the fact that DL is used for the recognition of phase 

transitions. To classify various states of configuration, the 

critical behavior has to be studied. A DL technique that is 

based on a supervised approach can be applied for the 

categorization of matter phases both in symmetry 

breaking and topological modes.  

In this approach, the prior labeling of the states in 

renowned regimes such as a state belonging to a globule 

or coil phase is necessary.  This fact, however, has to be 

taken into account that supervised learning label confines 

the feasibility of using this method to identify undetected 

states. Without prior labeling, unsupervised techniques 

can achieve properties from the unprocessed data while 

the supervised ones do not have this capability. Hence, 

when the taxonomy is unknown to us, unsupervised 

learning can be considered particularly worthwhile. In a 

study conducted by Sun et al. [42], 

 tool was introduced for the identification of polymer 

configuration. They used an unsupervised method based 

on the autoencoder system as well as a self-organizing 

map (SOM) to detect critical transitions of phase from a 

raw conformation. Presenting this unconventional tool to 

recognize polymer configuration, researchers do not need 

to engineer hand-operated features.  

They trained the network from the encoder layer to code 

layer via two modes. First, they applied a Restrictive 

Boltzmann Machine (RBM) to initially train the network 

parameters. Second, the trained parameters are copied to 

the decoder and encoder network. To make the decoding 

data near to the input data, they finally used the Back 

Propagation (BP) algorithm to further train the 

intermediate code of the NN. They compared the labeled 

supervised, unsupervised learning, and traditional 

computing results. The labeled supervised learning 

resulted in lower accuracy, while the result of the 

unsupervised learning prediction was closer to the 

simulation results. 

2.5. Convolutional neural networks 

The CNNs apply the approach of local connection and 

weight sharing. This decreases the network complexity 

and enables the network to employ the image directly as 

an input.  These networks possess two significant 

characteristics. First, the learned features from the image 

are non-deformable and translational. Second, the higher 

convolutional layer is the sign of the more complex and 

abstract extracted features.  

The CNN consists of the convolution layer composed of 

filters, the pooling layer, and the fully connected layer. In 

the convolution layer, every filter is equivalent to a small 

window moving on the image in order to learn features 

from the image. To draw the features that are more 

representative and improve the accuracy and robustness 

of the model, the learned features can be subsampled via 

pooling. Eventually, the prediction result can be 

outputted by the fully connected layer. [22] 

It has been discovered that the cells of the animal visual 

cortex are responsible for light detection in receptive 

fields. CNN, as a known DL architecture, is inspired by 

the explained visual perception mechanism of the alive 

creatures. Although there are a large number of CNN 

architecture variants in the literature, their main 

components are not dissimilar. [43]. CNNs, which are 

largely  for the popularity of Neural Networks, have been 

recently introduced as a significant aspect of deep 

learning  [44].  

They are efficient for computer vision problems because 

they can manage translation invariances in pictures, 

which can be done just by relying on shared weights. 

Moreover, they can manipulate spatial locality by 

imposing a local connectivity design between adjacent 

layer neurons. Considering this and based on the fact that 

they needed a model to identify various kinds of scaffolds 

and differentiate them from each other, Akogo et al. [45] 

used CNN to recognize three classes of 3D polymer-

based scaffolds. 

 These scaffolds are useful for tissue regeneration 

containing one from an airbrushed set and two others 

produced from steel wires and an electrospun fiber set. 

They aimed to develop a network model to identify and 

categorize these sets to introduce a tool that is beneficial 

in the biomedical industry. Their proposed method, 

named ScaffoldNet, takes the scaffold images related to 

the scanning electron microscope. Then, they classify 

them accurately by a six- layer CNN. This model was 

done on a dataset with 3043 images where 2376 images 

were used for training, 368 images for validating, and 301 

images for testing the model. An imaged scaffold is taken 
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in as the input and then the probability of belonging the 

input image to all three classes can be calculated. Finally, 

they chose the class with the highest probability and 

marked this class as the output, which was Electrospun 

with the probability of 0.98. Their model, which obtained 

the up-to-date results amongst other methods with an 

accuracy of 99.44%, can present a great potential in the 

complicated problems related to the screening of fibrous 

and biological structures of fibrous shells and the cortical 

bone (Table 1). 

The majority of polymers display low Thermal 

Conductivity (TC) that cannot be considered adequate for 

many applications requiring great heat conduction. Based 

on the experimental studies and Molecular Dynamics 

(MD) simulation, scientists have proven that the polymer 

chains as materials with low-dimension can possess great 

TC [46]. 

 Therefore, there is an expectation to develop new 

polymer materials possessing high TC [47]. Polymers 

orientation [48], crystallinity, crystal form [49] and chain 

structure [50], [51] are the factors that affect the TC of 

polymers. Among the mentioned characterizations, the 

chain structure that includes molecular conformation and 

composition and determines different polymers of TC is 

the first level of the structure. Based on the equation of 

Debye (i.e.k = Cpʋl/3), TC is related to ʋ (the phonon 

velocity), Cp (the specific heat capacity per unit volume), 

and l (the phonon mean free path). 

Generally, ʋ and Cp of polymers are principally 

determined by the backbone bonding strength and the 

features of the monomer repeat the unit in the individual 

chain [52]. 

 However, expensive and long experiments prevented the 

possibility to design advanced and novel polymers having 

functional thermal features. Combining big data methods 

and material science, researchers have used machine 

learning techniques to increase the speed of material 

development. To predict the TC of different single-chain 

polymers, Zhu et al. [53]  

applied CNN and, then, investigated the link between the 

TC and molecular structure of polymers. Finally, they 

identified the assumed polymers possessing great 

TC. Their investigation showed this fact that polymers 

with functional groups like -(C= O) which possess strong 

bond strength present high TC due to the constrained 

rotation of segments. This is worthwhile to state that 

polymer chains with well-arranged spatial structures 

often have higher TC. Their general technique can be a 

promising method to present the systematic and screening 

identification of high thermal conductivity. 

Researchers have applied a high-priced DFT on the small 

materials, but it can be used to predict the features of bulk 

polymers. As a section of the Harvard Clean Energy 

Project, a dataset with the size of 20,000 is made by 

scientists [54]. The excellent estimation ability of drug 

efficiency, photovoltaic efficacy, and solubility is 

provided by using a neural fingerprinting technique 

developed on a SMILES. This is the result of representing 

molecules on graphs with bonds as edges and atoms as 

vertices via a subset of Harvard Clean Energy Project 

data [55]. The use of direct morphological data instead of 

DFT for fingerprinting which reduces the material 

innovation time is an important improvement in the 

exploration of novel materials. However, a deep 

understanding of the related and most beneficial 

descriptors which affects the polymer features is needed. 

It has been found that the symmetry of inorganic crystals 

in which a long-range order is required can be reflected 

by the lattice, whereas the basis is the repeating unit. 

Nevertheless, polymers, as amorphous materials, do not 

display a long-range order because they do not conform 

to any lattice. 

 

 Nevertheless, this fact has to be considered that the 

ground state property, including the polymer bandgap 

and dielectric constant determined by the monomer unit 

can be well translated to actual applications. The 

dielectric constant which is the bonding nature result 

between the component atoms is the reflection of the 

polymer electronic polarizability and the bandgap is 

contingent on the bonding strength.  

 

Considering these facts, everyone assumes that knowing 

the bonding type between atoms as well as the atoms 

constituting the monomer, as a fingerprint morphological 

character is enough to predict these features. Scientists 

can transform these data into a two-dimensional (2D) 

graph and then apply them as input into a CNN to 

estimate the mentioned characterizations [56].  

In a comprehensive study carried out by Zeng et al. [57], 

the prediction of the bandgap and the dielectric constant 

of polymer compounds has been made by Elegant Graph 

Convolutional Neural Network (GCNN). Applying the 

different machine learning algorithms such as gradient 

boosting, random forest, graph convolution neural 

network, kernel regression, and conventional neural 

network, they predicted the energy band gap and 

dielectric constant of polymers. Their results proved that 

GCNN with the minimum average error for both features 

could make a quick and correct development in the field 

of polymer properties prediction. A schematic difference 

between the GCNN and traditional methods has been 

shown in Figure 12. Therefore, this method can provide 

the route for inverse design, in which polymers can be 

structured in mind with an ultimate property. 

 

 This study proved the fact that it is merely required to 

take into account the morphological features of polymers 

in order to obtain the accuracy and speed in predictions. 
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Figure 12. Comparison between GCNN and other machine learning algorithms. The 

conventional techniques depends on hand engineered characterizations crafted from quantitative 

structure-property relationship, SMILE string polymers morphology. One considerable benefit of graph 

CNN is its capability to automatically learn the map polymer structure and the chemical environment of polymers to abundant 

feature vectors for a quick and correct prediction on polymer features [57]. 

Researchers have developed the models of Quantitative 

Structure-Property Relationship (QSPR) recently. To 

save resources and time in industrial development, this 

would be very important for the material designers to 

predict the new material's behavior before synthesizing 

them. This would also accelerate the scientific knowledge 

of structure-property linkage in polymer science. 

Especially, these predictions are more interesting when 

only the chemical structure of monomers is used since no 

information from complicated calculations or 

experimental evaluations is required. To establish the 

structure-property linkage among various QSPR 

modeling techniques, ANN has been introduced as an 

appropriate and helpful approach, particularly along with 

the fast improvement of graphical processing units (GPU) 

and computers [58]–[60]. 

In a work conducted by Joyce et al. [61], a fully 

connected network-based technique has been introduced 

with the hidden layers of more than three. In this work, 

the monomer chemical structure was partly presented by 

a numerical version of SMILES. Unfortunately, this 

method requires the addition of many numbers to every 

monomer code to consider other data like a position in the 

structure or element period, which can be expensive and 

difficult to automate and encode. In another study, 

Miccio et al. [8] used an ANN model with the ability to 

encode all of the structures and composition data that are 

contained in the SMILES code into a readable binary 

image. They focused on the Thermogravity (TG) 

prediction merely with the chemical structure of their 

repeating units (monomer) via a combination of CNN 

coupled with fully connected (FC) layers. It is worth 

mentioning that their method which does not need any 
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calculations or experimental measurements can be 

applied for the prediction of other polymer features, 

including fragility or polarizability.   

The products of corrosion can cause environmental 

pollution. The degradation of alloys or metals due to 

corrosion can decrease their lifetime. Based on the 

studies, protecting layers can postpone these destructive 

consequences, among which the most efficient and 

easiest one is the corrosion inhibitor adsorption on the 

metallic surface [62]–[65]. On the numerical data such as 

the curves of electrochemical impedance spectroscopy 

and quantum chemical calculations, researchers used DL 

for the steel corrosion analysis under various inhibitors. 

The expectation that images need to keep further 

information on the already made coatings and their 

feature complication as well as the necessity for their 

automated representation cause DL to be the best option 

for this task [66]–[68]. In a study conducted by Samide et 

al. [44], the deep learning technology has been used to 

investigate the formed Polyvinyl alcohol (PVA) and Ag 

nanoparticles/PVA coatings on the surface of copper in 

0.1 molL hydrochloric solution. To extract the 

dissimilarities/similarities between protected/unprotected 

surfaces and demonstrate the ability of PVA and 

nAg/PVA to slow copper corrosion, they organized the 

morphology of material surface via convolutional neural 

networks without any human influence. The 

electrochemical assessment proved the polarization 

resistance (Rp) enhancement and the corrosion current 

density (icorr) reduction with either nAg/polyvinyl 

alcohol or polyvinyl alcohol. Hence, they can be 

introduced as efficient inhibitors of copper corrosion in 

an acidic environment which can make the protective 

coatings of polymer-metal surface adsorption. 

Studies have shown that the filler addition to the matrix 

can enhance the mechanical, optical and dielectrical 

features of polymer nanocomposites in comparison with 

the unfilled matrix system [69]. A variety of 

micromechanical models, including Halpin-Tsai, Mori-

Tanaka, and self-consistent schemes have been used by 

researchers in order to predict the thermomechanical 

characterization of nanocomposites [70]–[72]. To 

completely capture the morphology information or 

dispersion state of the applied fillers, these analytical 

techniques are insufficient while the models usually 

include structural features. To investigate the 

nanocomposites behavior, Finite element (FE) 

simulations, as the best option for this goal, can 

thoroughly capture the structural information and also 

adjust the systems of non-homogenous material with a 

clear configuration of all material phases [73]–[75]. The 

data-driven methods founded on the process-structure-

property (PSP) linkage, as a significant area in material 

science, have received considerable attention combining 

statistics, computer, and material science [75], [76].  

In the field of nanocomposite, scientists have developed 

NanoMine which is a data-driven web-based program to 

computational archives as well as experimental data on 

nanocomposites. This platform includes measured 

features, processing techniques, composition, and 

microstructural images of nanocomposites to provide 

visualization and quick data queries [77], [78]. In another 

work, researchers applied NanoMine data to develop a 

data-driven technique for modeling the relationship 

between structures and processing [75].To design and 

model the new structures and systems, including the 

design of computational models, experiments, and 

machine learning techniques, a simulation-based data-

driven system was developed by researchers in another 

study [76]. DL can be used in material science, especially 

when the structural images are studied. For example, a 

deep convolutional network was used by Yang et al. [79] 

to design structure-property linkage for the 

microstructures of a high-contrast elastic 3-D composite. 

To investigate this linkage for polymer nanocomposites, 

Wang et al. [70] applied a database of simulated data. The 

exploration of a broad range of structures and the 

capability to produce and analyze a considerable amount 

of data can be presented by the flexibility provided by 

simulations. The first study to create a structure-property 

relationship to predict the mechanical characteristics of 

polymer nanocomposites has been conducted by them via 

experimental data from NanoMine. In this research, there 

are three property interests among the mechanical 

features of the bulk composites, including rubbery 

modulus, glassy modulus, and tan 𝛿 peak. First, they 

examined the effect of the microstructure descriptors 

(filler dispersion and composition, interphase) and the 

mechanical features by using both the finite element 

simulations and microstructure reconstruction 

techniques. Then, a combination of multi-task learning 

and convolutional neural networks was presented by 

them to quantitatively estimate the relationship between 

the property values and microstructure. The presented 

deep learning method can enhance the prediction 

accuracy of rubbery modulus, glass modulus, and tan 𝛿 

peak as much as 34.2%, 45.2%, and 19.7%, respectively. 

It has also the potential to be generalized to realize other 

features and material mechanisms along with the 

guidance for the design of the material with given 

performance. 

The great stiffness-to-weight and strength-to-weight 

ratios of polymer composites made them the main 

component for spacecraft and aircraft construction. 

Generally, the fabrication process of highly performed 

composite parts can be performed done by autoclaves in 

which a circulating flow of air is applied to heat them 

[80]. Microwave processing technology as compared 

with conductive heating has low energy consumption and 

short processing time. There is, however, one problem 

regarding the use of this technology, which is the 

unbalanced distribution of electromagnetic field, 

resulting in the uneven temperature on the surface of the 

composite. So far, various methods have been introduced 
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for the temperature uniformity improvement on the 

composite material surface. Focusing on the device 

configuration optimization, some scientists improved the 

evenness of the static electromagnetic field via the 

enhancement of the number of electromagnetic modes or 

altering them within the cavity of microwaves. Hence, the 

temperature uniformity can be improved by possible 

incidental compensation impact existing between 

different modes of electromagnetics. In another effort, 

other researchers have attempted to create a relative 

motion between the electromagnetic field and processed 

material during microwave heating [81]. For example, in 

the food industry, a turntable was introduced by 

Cuccurullo et al. [82] to lead the food moving via 

alternative low and high power areas. However, these 

approaches are not successful to guarantee the high need 

for accurate temperature control on the surface of 

polymer composites during the curing process. 

Considering these shortages, an online smart temperature 

control based on deep CNN to realize a microwave curing 

process for high-quality composite materials has been 

developed in 2019, as displayed in Figure 13. In this 

study, Zhou et al. [80] applied CNN to learn the 

composite temperature performance during curing under 

different strategies of microwave control. They 

introduced the provision of proper solutions to the 

various distributions of temperature with considerable 

improvement in comparison with current representative 

approaches.  

In another attempt, Li et al. [81] reported a study in which 

a new data-driven technique has been suggested to model 

the complicated linkage between heating pattern (HP) 

and microwave control strategy (MCS). They employed 

many historical HP-MCS data to train and test an 

optimized CNN as their selected numerical tool. Then, 

they applied this well-trained CNN in order to give the 

result: MCS of the monitored uneven temperature 

distribution during the process of microwave curing. 

Based on their results, a 13.7%~43.9% of temperature 

reduction in temperature change has been obtained during 

the curing process of polymer composite microwave. 

This is along with the reduction of about 53% in 

temperature difference in comparison with the current 

techniques that can prove the efficiency of this approach.   

Despite the unique advantages of composite structures, 

including the corrosion resistance feature particularly 

under the freeze-thaw cycle effects and great strength to 

the weight ratio in engineering application, they have 

some disadvantages. These disadvantages are normally 

hidden and may cause disastrous structural failures. They 

are not only easy to delaminate but also liable to fiber 

crack and matrix breakage. The external as well as 

internal damage can be the result of the production 

process, design techniques, and quality control. Because 

of the increasing demand for high strength and 

lightweight materials in the market in special 

applications, fiber-reinforced composites (FRC) 

composed of natural or synthetic materials have gained 

more attraction. The introduction of either natural or 

synthetic fibers in composite material fabrication has  

 

 
Figure 13.  Online learning according to the smart temperature control during polymer composites microwave curing process 

[80] 

disclosed important applications in several fields like 

automobile, aerospace, biomedical, mechanical, 

construction, and marine areas. The failures induced by 

bend, tensile, temperature, corrosion, strain, unsuitable 
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installation, and attachment join, as the principal failure 

modes of FRP, are complicated and their identification, 

localization, and quantification are difficult, particularly 

during the shared impact of several factors. Infrastructure 

systems are degradable with time and can be damaged 

under natural dangers as well as other unpredictable 

disturbances. Hence, the construction of endurable, 

ecological, and resilient infrastructure systems is of 

importance.  

One of the most significant civil infrastructure 

components, utility and gas pipeline networks, and 

systems, should be appropriately designed to withstand 

failure and damage during their lifespan. Different 

analytical and monitoring techniques have been 

developed for damage detection like a conjugated beam 

method (ICBM), the theory of long gauge stress influence 

line coefficient for damage identification. In addition to 

them, the bearing capability evaluation of a bridge and 

electrical capacitance sensors for the fatigue damage 

detection of composite pipeline systems have been 

introduced. To collect the vibration signal reaction of soil 

surrounding the pipeline and categorize several types of 

activities by an artificial neural network, Wang et al. [83]  

 

applied a long-distance fiber which was based on the 

sensing and monitoring system. Another promising 

approach reported by scientists is modal macro strain-

based damage detection as it is more effective and 

sensitive compared with other related techniques. 

Proposing a modal macro-strain (MMS) vector, 

researchers have verified an effective damage detection 

algorithm for the damage localization of flexural 

structures using the extraction of modal parameters from 

the dynamic macro-strain responses. It is not easy to 

assess the structural health condition in real time when 

we are involved with complicated industrial and civil 

structures and there is the corruption possibility of 

measured structure signals because of the environmental 

noise. The necessity of a non-modal-based technique for 

the damage identification of these structures can be 

addressed by DL because it possesses adaptive and 

superior dataset learning.  In a study conducted by Zhao 

et al. [84], 

 the analysis of a pipeline system of basalt fiber-

reinforced polymer (BFRP) is reported which was done 

by long-gauge distributed fiber Bragg grating (FBG) 

sensors. The reflection of internal damage to images 

when they are taken from the outside of the structures 

would make it difficult to go for the damage identification 

application based on the image. Thus, the deep learning 

usage for image-based damage identification can only be 

effective in detecting external structural damages. 

Besides, these images may include various amounts of 

shadow and light and noise disturbance. To create a 

category of 1.2 million high-quality images in this work, 

they utilized a large deep CNN and prepared a 3D beam-

based damage identification to reflect the exact structure 

status instead of a 1D model. In comparison with direct 

image extraction techniques for damage diagnose in this 

method, which is markedly appropriate for the variable 

and complicated environment, firstly the plot distribution 

map of structural modal macro strains which is sensitive 

to structural hurt is studied. Then, the convolutional 

neural network is applied to train and test these “feature 

maps” to recognize the support and external excitation 

location as well as the damage extension inherently. The 

processing of structural fiber-reinforced polymer 

composites to produce the materials that have with the 

desired fatigue, stiffness, strength, and resistance to 

environmental impacts can be in the form of a 

thermoplastic and thermoset resin into a fabric system via 

the polymer matrix penetration.  

Improved structural composites have provided their 

widespread use in military aircraft and civil applications 

due to the high level of maturity in terms of design and 

manufacturing process. To optimize materials and cost 

reduction in the future, the automation of process steps, 

the increase of part integration level along with 

constant demand for zero-defect manufacturing, guided 

by The Fourth Industrial Revolution (or Industry 4.0) can 

be a significant step. A dry cloth covered and put into a 

mould to saturate with a liquid resin by imposing a 

pressure gradient is the beginning of the Liquid moulding 

of composites (LCM).  

Today, LCM approaches can deliver composite articles 

with complex shapes and high-quality industries. This 

fact, however, has to be considered that the main 

challenge with them would be the natural uncertainty 

about the flow patterns created when resin saturation is 

severely influenced via various processing disorders. To 

make the first examination of machine learning 

techniques to identify automatically flow disorder 

resulting from the presence of unlike regions of the 

permeability in LCM, González et al. [85] used a 

supervised regression machine learning system according 

to the CNN. Using this method, they estimated the size, 

position, and relative permeability of a dissimilar 

material region during the manufacturing of composites 

by LM (liquid moulding). The presence of a region of 

dissimilar material causes the deformity of the pressure 

field. This is followed by the flow patterns detected via 

by analyzing the pressure alternations registered by a 

distributed network of sensors. They found that the 

effectiveness of CNN techniques in overcoming the 

physical and engineering challenges relating to various 

datasets was closely allied to the Industry 4.0 concepts.  

Recently, the realistic models of woven composite 

materials have been developed significantly. The current 

production technique for the material finite element 

model is classified into three categories: (1) Ideal 

geometry creation based on the statistical data such as 

tow level analysis (2) Geometry extraction from the 

numerical simulation results like the simulation of fabric 
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density, and (3) a A model development based on actual 

microtomography (μ-CT) images. The first method is the 

most evident way to get the model; however, creating an 

ideal geometry that is close to the real shape seems 

difficult and the resulting volume of the ideal tows can be 

lower than the real one. To create a real shaped model, in 

the second method, the geometry of the fabric is produced 

from a simulation.  

Again, of this method is the regulation of the model 

parameters required to get the favorable shape. The third 

method is modeling textile geometry based on µ-CT 

information, which includes image-based meshing and µ-

CT image processing. Again, the usual complexity of µ-

CT image processing results in a low resolution and 

contrast among various material constituents such as 

resin and carbon is the major challenge. Manual 

segmentation, an alternative to automatized 

segmentation, can be time-consuming because of the size 

of these datasets’s size. 

 To find an efficient image segmentation technique for µ-

CT data of carbon fiber reinforced polymers (CFRP), 

comprising of a simple woven tows structure at the meso-

scale with a low contrast to noise ratio, Sinchuk et al. [86] 

used two methods, including a variational approach and 

convolutional neural network. The X-ray imaging data of 

carbon composites may be of low quality, which makes 

them difficult to segment. These reasons include the low 

resolution of µ-CT data depending on the diameter of the 

fiber, and low µ-CT data resolution between the material 

constituents.  In this study, they made limited 

modifications to the network structure and evaluated the 

various criteria and concluded that the best results are 

obtained with a deep learning approach with U-Net 

neural network. Generally, this proposed solution can 

considerably expand the image range, which is applied on 

the automatic preparation of the realistic textile 

geometry. In comparison with manual dataset 

segmentation, their methods displayed reasonable results, 

even for noisy µ-CT data. 

2.6. Deep belief networks 

The greater performance of DBN (Deep belief networks) 

in language processing and image recognition has been 

confirmed recently. DBN consisting of four or more 

layers is the kind of deep neural network with a deep 

structure trained in two training stages, including 

supervised and unsupervised training phases [87]. The 

principal DBN theory is that it takes Restricted 

Boltzmann Machines (RBMs) into account as the hidden 

layers in which one RBM can be as an individual single 

layer. DBN is constructed via stacking various RBMs. 

There are merely two layers in the RBMs: the hidden 

layer and the visible layer consisting of hidden units and 

the visible units, respectively. The hidden layers are 

applied as a feature vector, while the visible layer is used 

for the training data input. Every layer is represented as a 

vector, while every dimension can be represented via 

every independent neuron. The advantage of this is 

providing the values of all the explicit elements that are 

independent of each other. The features of the explicit 

layer can be extracted more precisely by the trained TRB 

machine. This trained machine can also restore the 

explicit layer based on the represented features by the 

implicit layer.  As displayed in Figure 14, different RBMs 

can be connected to create a DBN. In these networks, the 

hidden layer of the prior RBM is the visible layer of the 

following RBM machine, meaning that the output of the 

previous RBM machine would be the input of the later 

RBMs. Before training the RBM in the current layer, the 

full training of the RBM in the higher layer is required in 

the training process. This technique continues to the last 

layer. [22] 

 
Figure 14.  Different RBMs are connected to create a DBN. 

 

Modern monitoring approaches require to be introduced 

for the production system in the industry because 

hardware measurement instruments to assess the 

variables of product quality online are not cost-effective 

and they are not easy to be developed. Based on the 

connection modeling between hard-to-measure quality 

variables and easy-to-measure process variables, many 

important variables of product quality can be easily 

measured. To do this, soft sensors are introduced, among 

which the data-driven ones have attracted much 

popularity in the chemical process in the last two decades. 

Because of the great generalization ability of DBN, Zhu 

et al. [88]  

used it to estimate the melt index of produced 

polypropylene via continuously stirred tank reactors 

(CSTR) during an industrial polymerization system. Melt 

index as the main variable for the representation of 

polymer quality and a difficult value to be evaluated 

online is related to some easy-measured process variables 

although the relationship is commonly nonlinear. In this 

study, the development of nonlinear empirical models is 

required as the propylene polymerization process is 

nonlinear. To determine a DBN model structure, no 

common rules have been defined. The number of 25 

various DBN models with different neuron numbers was 

constructed to compare the performance of different 

DBN models where the testing error is the principal 



J. Chem. Lett. 2 (2021) 157-177 

173 

 

element for the determination of the DBN structures in 

this work. The presented DBN models possess a visible 

layer, two hidden layers as well as an extra top layer for 

training. Weights, as the most significant parameters of 

the model, can be regulated in suitable regions via RBMs, 

and then DBN will be well-tuned via back-propagation. 

Once the model is trained from primary weights, neural 

networks give weak results.  Hence, the unsupervised 

training process can be efficient and crucial for the DBN 

model. As mentioned before, a DBN model development 

includes supervised and unsupervised training processes. 

The input layer units are chosen as Gaussian units since 

the process variables are continual and the hidden layer 

units are usually selected as binary units. After the 

unsupervised training of the DBN, an extra top layer is 

added to the developed RBMs whose weights can be 

initialized incidentally and the whole DNN can be trained 

through the gradient descent and backpropagation 

method. The weights can be adjusted in great regions by 

DBN which uses plenty of information behind the 

process data.   The learning rates of 0.0015 and 0.001 

have been selected for the supervised and unsupervised 

training techniques, respectively. The most suitable 

model structure is the model with the smallest testing 

error. They divided the 383 pairs of quality and process 

data into three sections (i.e., training, testing, and 

validation dataset). According to the cross-validation 

method, to train DBN and test its model performance, the 

training data and testing data have been applied 

respectively. After the determination of the model 

structure by testing the data, the final chosen DBN model, 

was validated by validation data.   

Using a modern semi-supervised learning method, the 

deep belief network model showed better performance 

with the precise prediction of MI compared with the 

conventional neural networks. This is so due to the fact 

that the prediction of polypropylene MI by DBN can be 

improved by the ‘unlabeled’ process data, which cannot 

be applied by conventional process models. Therefore, it 

has been found that the DBN models are the best options 

when we have more samples of process variables 

accessible. Finally, they concluded that a deep belief 

network could be applied as an appropriate method for 

nonlinear chemical operations for hopeful applications in 

an industrial chemical process. 

. 
Table 1. Some information about the architecture, datasets and parameters applied in some referenced studies 

dataset 
Input layers 

nodes 
Hidden layer 

numbers 
Output layer 

 nodes 
Activation 
function 

Loss 
function1 

Dataset size 

(training test, 

validation test) 

Accuracy Ref. 

two sets of 
scattering 

intensity 

datasets for 
the phenyl 

ring 

deuterated 
and fully 

deuterated 

PS 

2 
4 layers each 

with 25 nodes 
1 Sigmoid MSE 

Dataset size: 

10’000 
MSE: 6.9*e-7 [19] 

TC dataset 

of polymers 

A list of 

integer 

identifiers 
of 250 

1-3 Conv2 ., 1 
pooling layer, 

3FC3.  Layers 

molecular structure NR.4 RMSE5  

and  MAE6 Training: 90% 94.79 [48] 

polymers 

and their  
solvents/no

nsolvents 

Two 
branches: 

Polymers 

and 

Solvents 

Solvent 
branch:2 

Hidden Layers,  

Polymer 

branch: 3 

1(Binary classification: 

Good 

Solvent/NonSolvent 
PReLU7 NR. 

 
4595 

Training: 90% 

Test: 10% 

93.8 [20] 

Generated 

by normal  
distribution 

5 9 2 ReLU 
MSE & 

MAE 

1million 
Train:80% 

Validation:10% 

Test: 10% 

Best loss: 

5.577E-6 
[21] 

polymers & 
their 

correspondi

ng Tg 

Binary 
Images of 

SMILES 

information 

2Conv layers, 

1 Max Pooling,  
1 FC 

1 neuron ReLU 

Median 

relative 
error 

Train/test: 
75/25 

80/20 

90/10 

94% [8] 

scaffold 

images 

128*128 

scaffold 
images 

6 3 ReLU 
Cross-

entropy 

3043 
train: 2376 

Validation: 368 

Test: 301 

99.44 [40] 

available 

dataset at 

the 

Polymerge

nome 

Project 

two-

dimensiona

l graph 

2Conv, 1 

Pooling Layer, 

2 FC 
physical property of 

polymers 

A  non-linear 

convolution 
function 

MAE 
1073 Polymers 

Train:60% 

Validation:20% 

test:20% 

MAE: 0.24 [52] 
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A dataset  

is created 

using 
generated 

microstruct

ures and 
FEA model 

256*256 
5Conv, 5Max 

Pooling, 2FC 
3outputs each with 1 

Neuron 

ReLU, 

sigmoid, 

tanh. 

MAPE8 

11000 Data, 

Train:70% 
Validation:15% 

test:15% 

mean of MAPE 
across trials: of: 

glass 

modulus/rubber

y modulus/tan 𝛿 
peak: 0.68%/ 

3.12%, 3.58% 

[70] 

3-D 

microstruct
ures 

( MVEs) 

elastic 3-D 

composites 

(51*51*51 
data) 

2Conv/ 2 
Pooling Layer/ 

1 FC 

Effective property of 

given microstructure. 
ReLU MASE 

& MAE 

8550  data 
MASE/MAE: 

3.1% 
[79] 

HP-MCS 

data pairs 

HP or 

Heating 

Pattern(4*3 
data) 

3Conv / 2 FC 
MCS or Microwave 
Control Strategy (21 

nodes) 
ReLU MSE NR. 92.5 % [80] 

HP-MCS 

data pairs 

HP 

data(4*5 

matrix) 

3Conv / 2 FC 
MCS ReLU MSE 

3000 Pairs 

Train:90%, 

Test:10% 

92% [81] 

NR. 
PSD  of 
MMS 

256*256 

Image 

2Conv/ 

2Pooling 
/1 FC 

damage types of 

pipeline systems 
Sigmoid NR. 

6800 

Train/test: 
6000/800 

98.42% [84] 

pressure 

probes 

footprint 
images 

obtained 

with the 
mould 

filling 

simulations 

100*9 
Images 

2Conv/2Max 
Pooling/3 FC 

5 nodes (correspond to 

5  position) ReLU MSE 

3000 Images 

Train/test: 

80%/20% 

99% [85] 

CFRP  
dataset 

3D gray-

scale µ-CT 

Images 

32 Layers 
NR. NR. NR. 

NR. 
Raw Imgs: 

95.27,  gradient 

images: 92.5 

[86] 

 

Loss: the error prediction of NN/ 1) Loss function: the approach of the loss calculation / Optimizer: to decrease the loss value, 

optimization techniques or algorithms (optimizers) including learning rate and weights is efficient. Optimizer for [24], [25], [26], 

[8], [45], [57], [79] is Adam. For [53], [81] and [85] is Adaptive moment estimation optimization method, Mini-Batch Gradient 

Descent and Adadelta, respectively. For other references is NR. Libraries / Platforms:  Tensor Flow: [24];   Keras: [26], [85]; Keras 

and Tensor Flow: [79]; Keras with Tensor Flow backend: [70]; other references: NR 

2) Convolution layer  

3) Fully connected  

4) Not reported  

5) Root mean square error  

6) Mean absolute errors 

7) Parametrized rectified linear unit  

8) Mean absolute percentage error. 

 

 
3.  Conclusion 

There has recently been a huge increase in the usage of 

polymer and polymer composites in different areas. 

Based on this tremendous demand, researchers need to 

update the production system of these materials based on 

a smart manufacturing approach to optimize and 

accelerate their process system. Additionally, there is an 

urgent need to improve the polymer and polymer 

composites systems to increase the efficiency and 

decrease the environmental problems as well as the costs 

of failure, defect, and danger. Significant polymer 

features, including polymer structure factor, thermal 

conductivity, crystallinity, solubility, etc., as controlling 

factors, can play a crucial role in various industries like 

pharmaceutical ones. Besides, the linkage between 

structure and property can help researchers and industries 

improve their production landscape. Therefore, data-

driven methods in the architecture of ML, especially DL 

can pave the way for researchers and manufacturers. In 

this review article, we tried to present a comprehensive 

classification based on the most applicable DL techniques 

in the field of polymer and polymer composites. This 

paper reviewed the use of DL method for the design, 

synthesis, and process system of polymer and polymer 

composites. We also discussed the advantages of DL 

usage in the polymer and polymer composite 

applications, which could make a huge difference in their 

safety and quality control. Based on our overview, CNN 

is the most popular technique with polymer technology 

researchers because it covered the vast scopes of 

applications ranging from the structure-property 

relationship to smart manufacturing. While for the 
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applications associated with the monitoring 

polymerization process, like tuning the MWD from a 

reaction system, DRL is the best option for researchers. 
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