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1. Introduction 

Dengue virus (DENV)  infection results from 

diseased mosquito bites, specifically the female Aedes 

aegypti or Aedes albopictus,  of the Aedes genus due to a 

virus called dengue virus [1][2]; an associate of the 

Flavivirus, primarily, found within the tropical and sub-
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tropical areas around the world [3]. The alarming 

prevalence of this mosquito-borne viral dengue infection 

calls for global concern. Every year, about 390 million 

dengue infections are recorded globally with a large 

percentage of the incidences taking place in the tropical 
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The global prevalence of dengue virus (DENV) infection has become a source of 

great concern to humanity. As such, infection, if left untreated, could progress to a 

life-threatening stage called dengue hemorrhagic fever or dengue shock syndrome. 

A large percentage of the world's population could be at risk of being infected by 

the dengue virus. The DENV NS4B receptor is essential in viral replication and 

hence could in principle be suitable as a therapeutic target in the treatment of 

dengue viral infection. The augmentation of existing agents that could inhibit the 

dengue virus is important. In this research, various classes of molecular descriptors 

were generated. Quantitative structure-activity relationship studies (QSARs) have 

been conducted to correlate the molecular properties of some indole derivatives 

with their anti-dengue activity and toxicity. The inhibitory activity and toxicity 

prediction models were statistically valid and robust, with acceptable statistical 

validation factors such as predicted R2
pred., adjusted R2

adj., cross-validated Q2 and R2 

regression coefficient, etc. (R2
pred. = 0.64448, R2

adj. = 0.59223, cR
2
𝑝

= 0.57134, Q2
CV 

= 0.64448, R2 = 0.63201) and (R2
pred. = 0.81813, R2

adj. = 0.56015, cR
2
𝑝

= 0.5386, 

Q2CV = 0.50548, R2 = 0.60645), respectively. The models revealed that the average 

Broto-Moreau autocorrelation-lag 7/weighted by first ionization potential 

(AATS7i), number of hydrogen bond acceptors (nHBAcc) for activity and 3D 

topological distance-based autocorrelation-lag 9/weighted by van der Waals 

volumes (TDB9v) descriptors were found to strongly influence the anti-dengue 

biological activity (pEC50) and toxicity (pCC50) of the indole derivatives, 

respectively. The indole derivatives were predicted to be orally bioavailable with 

excellent gastrointestinal absorption (94.044–90.219%). The DENV-2 NS4B 

inhibitory activity, as well as the cytotoxicity of indole derivatives with no 

experimental data, could be predicted with high precision using the models 

developed, which could further lead to a cut in experimental cost as well as the 

design of highly potent and less toxic derivatives.  
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and subtropical region, with about a quarter of the cases 

developing clinical symptoms [4]. 

Dengue virus infection is associated with 

symptoms such as fever, joint pain and in some cases 

could worsen to a severe stage of the infection that could 

lead to hemorrhagic fever or shock syndrome; a more 

devastating stage of dengue infection that could lead to 

death [5][6][7]. 

There is still no licensed antiviral drug for the 

cure of dengue virus disease in the face of the widespread 

of the disease and the endangerment associated with it [8] 

[9] [10]. 

The dengue virus is classified into four serotypes 

(serotypes 1-4), with each of the serotypes having seven 

non-structural (NS) proteins (NS1, NS2A-2B, NS3, 

NS4A-NS4B, and NS5). Infection caused by any of the 

four serotypes is lethal generally, but infection caused by 

serotype 2 is associated with the most devastating 

outcomes such as hemorrhagic fever and dengue shock 

syndrome. [11][12]. 

The significance of NS4B for viral replication 

gives it credence as a model target for developing anti-

dengue virus agents for the treatment of diseases 

instigated by Flavivirus [13]. Due to its high 

hydrophobicity, neither the crystal nor NMR structure of 

Flavivirus NS4B is currently available [13]. 

In a particular study, a 3-acyl indole derivative 

was identified from a phenotypic screening using a 

DENV-2 induced CPE assay. It was revealed that this 

class of compound resulted in multiple mutations in the 

NS4B protease of the virus. Furthermore, it was 

concluded that such potency is associated with the 

methoxy group in the meta position of the aniline 

moiety[13]. 

It has been reported that clinical development of 

dengue inhibitors has been hindered due to poor ADMET 

(absorption, distribution, metabolism, excretion, and 

toxicity) in animal model [14] [15]. Studies on the indole 

derivatives were also carried out to ascertain the drug-

likeness, bioavailability as well as the toxicity of the this 

important class of compounds with high therapeutic 

potential against DENV NS4B that is essential in the viral 

replication cycle, thus avoiding drug development 

failure. 

This research was targeted at building robust 

QSAR models for predicting the anti-dengue activity and 

toxicity of some indole derivatives as dengue virus 

serotype 2 NS4B inhibitors, as well as predicting the 

inhibitory activity and toxicity of newly designed or 

synthesized indole derivatives.  

The findings of this study will be used to provide 

structural information for the development of potent anti-

dengue virus agents with lower toxicity. 

 

 

2. Methods 

2.1 Data collection 

Some indole derivatives were obtained from 

recently published scientific literature [13], with reported 

experimentally measured DENV-2 NS4B inhibitory 

biological activity expressed as the concentration of the 

compounds where 50% of their maximal effect were 

observed (EC50), as well as their 

50% cytotoxic concentration (CC50). 

 

2.2 The response variables (Biological activities) 

The obtained response values (EC50 and CC50) of 

the indole derivatives reported in micro-Molar units (μM) 

were converted to a Molar unit and subsequently 

transformed to their respective logarithm units (pEC50) 

and (CC50) with the aid of Equation 1 (Eq.1) to obtain a 

normal statistical distribution of the values [16]. The 

chemical structures of the indole derivatives are 

presented in Supplementary Table 1(Table SM1). 

pEC50= -log (EC50)                                                           (1)                                                                                                                                                                                                                                   

 

2.3 Molecular geometry optimization and descriptors 

generation 

Molecular structures of the indole derivatives in 

Table SM1 were sketched with Chemdraw and 

successively optimized to obtain their equilibrium 

geometries at ground state with density functional 

method (DFT/B3LYP/6-31G*).  This is normally carried 

out to achieve conformation with the lowest stable energy 

[17]. The molecular descriptors (0D-3D) which are the 

numerical expression of information entrenched in any 

chemical structure were generated using the paDel-

Descriptor software tool and combined with the Spartan 

14 V1.1.4 software-generated descriptors [18]. 

 

2.4 Dataset pretreatment  

The generated descriptors of all the compounds 

were in an Excel file containing the respective numerical 

values of the descriptors. In this, all descriptor columns 

having a constant or null value were all deleted, as well 

as those descriptors having a correlation coefficient of 

more than 0.8.  

The pretreatment is targeted at removing 

redundant values to facilitate the generation of a robust 

model [16] [19]. 

 

2.5 Dataset division for model building   

The sets of the compounds were grouped into a 

training set for building the model and a test set for testing 

the predictive power of the model. Dataset Division 

software package was used for the division [20]. About 

70 % of the compounds were used for the model building 

and 30 % for testing the predictive power of the models 

in each case [21]. 
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2.6 MLR-GFA Model building  

The models for both inhibitory activity and 

toxicity were developed from their respective training set 

of the compounds using multiple linear regression (MLR) 

statistical method of the genetic function algorithm 

(GFA) implemented in Material Studio. This algorithm 

selects the best arrangements of descriptors that best 

describe the variation in the bioactivity of the 

compounds. This method has the capacity of generating 

several collections of descriptors that characterized a 

model. It also uses a lack-of-fit (LOF) function to identify 

over-fitting and moderate redundancy [21] in a model.  

The lesser the LOF value, the better the quality of the 

model, and it is evaluated using the mathematical 

expression: 

𝐿𝑂𝐹 =  
𝐿𝑆𝐸

(1−((𝑐+ 𝑑𝑝) 𝑀⁄ ))
2                                                 (2)                                                                                                                                                                                                                            

From Eq. 2, the numerator represents the model’s 

error of least squares, while c, d, p, and M in the 

denominator represent the number of basic terms, 

smoothing factor, model’s descriptors sum, and training 

compounds involved in building the model respectively 

[22]. 

 

2.7 Model quality tools and assessment   

Statistical validation parameters of the built 

models were appraised to determine the models’ fitting 

ability, consistency, predictive capability, and robustness 

[23].  

The quality of a developed model is satisfactory 

if the results agree with the generally satisfactory QSAR 

standard threshold value suggested in Table 1 [24]. 

 

2.8 QSAR model validation 

After developing the models, internal validations 

were performed to select the respective initial QSAR 

models, passing the required criteria are the internal 

validations; the predictive capability of the models are 

evaluated by the external validations using the test sets. 

The various internal and external validation 

parameters that characterize the models’ robustness were 

evaluated with the use of MLRplusValidation and Y-

Randomization software [20], which evaluates R2 (square 

correlation coefficient), Q2
CV (cross-validation 

coefficient), R2 pred. (external test set correlation 

coefficient) and cRp2 (coefficient of determination for Y-

Randomization) which were all obtained from the 

package. 

 

2.8.1 Multi-collinearity detection test 

 The presence of over correlation between the 

descriptors was examined with a factor called variance 

inflation factor (VIF) value for the respective descriptor 

in the model  is evaluated with the expression in Eq. 3: 

𝑉𝐼𝐹𝑖 = (
1

1−𝑅𝑖𝑗
2 )                                                           (3)                                                                                                                                                                                                                                                                                 

From Eq. 3, R2
ij represents the correlation value 

of the multiple regression of particular descriptor i 

concerning others j within the model [25]. 

 

2.8. 2 Model’s applicability domain analysis 

The prediction space or region of the model 

called the domain of applicability was examined using 

the extrapolation method [26]. It is significant in 

checking the use of dissimilar compounds in developing 

the model that could lead to the prediction of biological 

activity of compounds that is out of their domain [27]. 

This method involves the use of the compounds leverage 

(hi) values and standardized residual (SDR) of the model 

[28]. The leverages hi are evaluated as the transverse 

component of the matrix H:  

𝐻 = 𝑅. (𝑅𝑇𝑅)−1. 𝑅𝑇                                                    (4)                                                                                                                         

From Eq. 4, R represents the matrix column of 

the descriptors and its transpose by RT and SDR was 

determined as follows: 

𝑆𝐷𝑅 =
ŷ− y

√
∑ (ŷ− y)2n

i=1
m

                                                         (5)                                                                                                                        

From Eq. 5, the observed and predicted activities 

are denoted by y and ŷ respectively, while m denotes the 

training or test number of compounds. The AD of the 

model is set to predict within a boundary limit of 0 < hi < 

h* and an SDR limit of ±3. The cautionary leverage h* is 

computed by Equation 6: 

ℎ∗ =
3.(𝑗+1)

𝑚
                                      (6) 

From Eq. 6, j symbolizes the model’s descriptors 

amount, while m represents the number of compounds 

used in building the model. A graphical illustration of the 

AD is a plot of SDR against hi (leverages) known as 

William’s plot was obtained [29]. 

 

2.8.3 Mean effect   

Every descriptor in the models generated has its 

level of contribution in the prediction of the biological 

activity concerning other descriptors within the models, 

such levels of contribution by each of the descriptors 

relative to other was evaluated by calculating a parameter 

called mean effect represented by Eq. 7. 

 From Eq. 7, MEj is the mean effect of a specific 

descriptor j, whereas bj is the constant of the descriptor j, 

Rij indicates the descriptors numerical of respective 

molecule, and m is the total number of descriptors in the 

model [16]. 

𝑀𝐸𝑗 =
𝛽𝑗 ∑ 𝑅𝑖𝑗

𝑖=𝑛
𝑖=1

∑ .𝑚
𝑗 (𝛽𝑗 ∑ 𝑅𝑖𝑗

𝑛
𝑖 )

                                                      (7)                                                                                                                     

2.9 In silico ADMET prediction  

The ADMET parameters of some indole 

derivatives were assessed with the use of the Swiss-

ADME [15] and pkCSM – pharmacokinetics [30] free 

online tools to overcome challenges associated with poor 

pharmacokinetics.  
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Compounds 12, 33, 37, 45, 51, 53, and 101 were 

selected based on their antiviral potency for a detailed 

evaluation of their in silico ADMET properties. 

 

3. Results 

3.1 QSAR model quality  

Using a multiple linear regression of genetic 

algorithm, QSAR models for the predictions of both 

activity and toxicity of indole derivatives were 

developed. Each of the models contains four (4) 

descriptors. Eq. 8 and 9, respectively represent the 

models: 

Activity model 

pEC50 = 2.30487(+/-1.27191) -0.34692(+/-0.13721) 

ALogP + 5.68264(+/-1.32172) MATS7c -0.57907(+/-

0.11402) nHBAcc +0.00425(+/-0.00099) TDB9v                                                            

(8) 

Where, R2
adj. = 0.59223, R2

pred. = 0.64448, cR
2
𝑝

= 0.57134, 

Q2
CV = 0.64448, Ntrain =41, Nset =20, R2 = 0.63201  

Toxicity model 

pCC50 = 19.39932(+/-4.11029) +0.12922(+/-0.04698) 

ALogP -0.09695(+/-0.02659) AATS7i +0.17277(+/-

0.04282) SM1_Dzs -0.1827(+/-0.05436) RPCS                                                         

(9) 

Where, R2
adj. = 0.56015, R2

pred. = 0.81813, cR
2
𝑝

= 0.5386, 

Q2
CV =0.50548, Ntrain set =38   Ntest set =18, R2 = 0.60645  

N is the number of compounds, R2 is the squared 

correlation coefficient, R2adj signifies the adjusted R2 

while Q2
CV   represents the leave-one-out cross-validation 

value.  

Eq. 8 and 9 contain four descriptors each that are 

most significant to the activity (pEC50) and toxicity 

(pCC50) which includes ALogP, AATS7i, SM1_Dzs, 

RPCS and ALogP, MATS7c, nHBAcc, TDB9v 

respectively.  

Figures 1 and 2 depict the plots of predicted 

activity (pEC50) and toxicity (pCC50) against 

experimental activity (pEC50) and toxicity (pCC50), 

respectively. It could be observed from both plots 

(Figures 1 and 2) that there is close agreement between 

the predicted (pEC50) and (pCC50) of the test sets and 

those of the train sets in each case.  

The numerical values of the calculated 

descriptors involved in developing both activity and the 

toxicity models are presented in Supplementary Tables 2 

and 3 (Tables SM2 and SM3) as well as the residual 

values of their predictions. The presence of low residual 

values entails a good predictive capacity of the models. 

The statistically recommended validation factors 

for the acceptable QSAR model as well as the validation 

factors for the developed activity and toxicity models are 

presented in Table 1, which shows the validity of the 

models as such built models conformed to all the required 

validation factors for acceptability. 

The Y-randomization test results for both models 

(pEC50 and pCC50) are presented in Tables 1, SM4, and 

SM5 signifying robust models demonstrated by Y-

randomization parameters.  

The Williams’ plots for identifying the region of 

applicability of the activity and the toxicity models’ 

predictions are represented by Figures 3 and 4 

respectively, with most compounds having leverage 

values less than the critical leverage values and within the 

required standardized residual value of ±3.  

The complete explanation of the descriptors in 

each of the models, as well as their reliability in terms of 

chance correlation and degree of contribution, are 

presented in Tables 2 and 3. From Tables 2 and 3, both 

models are having variation inflation factors below the 

value of five (5), which is indicative of the absence of 

chance correlation.  

The absence of systematic error in the 

development of the models is also supported by the 

random distribution of the variables within the plots 

represented by Figures 5 and 6. The results of the 

predicted ADMET of some selected derivatives (12, 33, 

37, 45, 51, 53 and 101) of the indole are presented in 

Table 4. 

 

4. Discussion 

 4.1 QSAR model predictive quality analysis 

QSAR models for the prediction of biological 

activity (pEC50) and toxicity (pCC50) were built from the 

set of 61 indole derivatives using the GA-MLR statistical 

method.  

The models were developed from the training set 

using the multiple linear regression statistical method of 

the Genetic algorithm. About 30 % of the total number of 

compounds called the test set was used to validate the 

predictive power of the models in each case.  

In each of the models, four descriptors were 

found to be associated with the activity (pEC50) and 

toxicity (pCC50) of the compounds. These descriptors 

include ALogP, AATS7i, SM1_Dzs, RPCS and ALogP, 

MATS7c, nHBAcc, TDB9v, respectively. The models 

for the anti-dengue activity and toxicity predictions 

reported in the study are represented by Eq. 8 and 9, 

respectively, characterized by the following 

recommended QSAR model validation factors, (R2
adj. = 

0.59223, R2
pred. = 0.64448, cR

2
𝑝

= 0.57134, Q2
CV = 

0.64448, R2 = 0.63201) and (R2
adj. = 0.56015, R2

pred. = 

0.81813, cR
2
𝑝

= 0.5386, Q2
CV = 0.50548, R2 = 0.60645), 

respectively.                                                                                                                                                                                                     

The models were used to predict the activity (pEC50) and 
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toxicity (pCC50) of both training and test reported in 

Tables SM2 and SM3 respectively. 

  The graph of predicted activity (pEC50) and 

toxicity (pCC50) against their respective experimental 

activity (pEC50) and toxicity (pCC50) of the training set 

for the models (Figures 1 and 2) showed that a direct 

relationship exists between the two variables and the 

models had good internal extrapolation fitness [16][19]. 

In addition, Figures 1 and 2 showed the predicted 

activity (pEC50) and toxicity (pCC50) of the train and test 

sets against their experimental activity (pEC50) and 

toxicity (pCC50). It could be seen from Figures 1 and 2 

that the calculated activity (pEC50) and toxicity (pCC50) 

of the training were in good agreement with those of the 

test sets in each case, respectively.           

   Statistical validation factors [24][27] that 

characterize an acceptable QSAR model are presented in 

Table 1. The statistical validation factor obtained for the 

developed models (Equations 8 and 9) presented in Table 

1 is excellently acceptable based on the recommended 

standard of QSAR model acceptability. 

The data obtained show that the predictive 

effectiveness of the models is very good since  R2 greater 

than 0.5 shows that if these models are evaluated by test 

data, the accuracy of the prediction could be very reliable, 

which confirms the validity of the obtained results 

[16][19]. 

Detailed of the statistical validation parameters 

computed for the model presented in Table 1 showed that 

values for R2
adj. = 0.59223, R2

pred. = 0.64448, cR
2
𝑝

= 

0.57134, Q2
CV = 0.64448, R2 = 0.63201 for the activity 

model and R2
adj. = 0.56015, R2

pred. = 0.81813, cR
2
𝑝

= 

0.5386, Q2
CV = 0.50548, R2 =0.60645 for the toxicity 

model, respectively, are all within the recommended 

threshold values as suggested in Table 1 [24] [27]. 

Consequently, the models had outstanding internal and 

external prediction ability and it is not a product of 

coincidental correlation [16]. The model also passed all 

the recommended benchmarks for a predictive model 

[24][27]. 

 The result of the evaluation for Q2
CV is 0.64448 

and 0.50548 respectively; higher Q2
CV value evidences 

the ability of the presented models in support of their 

respective internal validation. 

 
Figure 1. Graphical illustration of predicted against experimental activity by GA-MLR (anti-dengue activity). 

 
 

 
Figure 2. Graphical representation of predicted against experimental toxicity MLR 
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Table 1. Model authentication factors for a generally satisfactory QSAR model 

Parameter Equation Threshold 

Score 

pEC50 

(Activity) 

Model 

score 

pCC50 

(Toxicity) 

Model score 

Remark 

Internal validation 

𝐑𝟐 [∑ {(Y − Y̅) × (Ŷ − Ŷ̅)}]
2

∑(Y − Ŷ)
2

× ∑(Ŷ − Ŷ̅)
2  

R2 > 0.6 0.63201 0.60645 Good 

𝐑𝐚𝐝𝐣
𝟐  (N − 1) ×  R2 −  p

N − 1 − p
 

Radj
2 > 0.6 0.59223 0.56015 Good 

𝐐𝟐 
1 − 

∑(Y − Ŷloo)
2

∑(Y − Y̅)2
 

Q2 > 0.5 0.55303 0.50548 

 

Good 

𝐅(𝟒,𝟑𝟕) ∑(Y − Y̅)2

p

∑(Y − Ŷ)
2

N − p − 1
⁄  

F(4,37) > 2.09 15.886 13.0984 

 

Good 

Random model Parameter (Y-Randomization) for robustness 

𝑹̅𝒓 The average of the coefficient of correlation for 

randomized data 
R̅ < 0.5 0.381252 0.396145 

 

Good 

𝑹̅𝒓
𝟐 The average of the coefficient of determination for 

randomized data 
𝑅̅𝑟

2 < 0.5 0.169464 0.180819 

 

Good 

𝑸̅𝒓
𝟐 The average of leave one out cross-validated 

determination coefficient for randomized data 
𝑄̅𝑟

2 < 0.5 -0.09626 -0.05495 

 

Good 

c𝐑𝐩
𝟐  

R2 ×  (1 − √|R2 − R̅r
2| ) 

cRp
2 > 0.5 0.57134 0.538618 

 

Good 

External validation for predictability and stability of the model 

𝐑𝐏𝐫𝐞𝐝
𝟐 . 

1 −  
∑(YExt. − ŶExt.)

2

∑(YExt. − Y̅)2
 

Rpred
2 > 0.6 0.64448 0.81813 

 

Good 

𝐫𝟐 Coefficient of determination for the plot of predicted 

versus observed for test set 
r2 > 0.6 0.60685 0.84631 

 

Good 

𝐫𝟎
𝟐 r2 at zero intercept  0.60619 0.81556 Good 

𝐫𝟎
′𝟐 r2 for the plot of experimental versus predicted 

activity for the test set at zero intercept 

 0.6061 0.81556 

 

Good 

|𝐫𝟎
𝟐 − 𝐫𝟎

′𝟐|  |r0
2 − r0

′2| < 0.3 0.21141 0.1478 Good 

𝒌 The slope of the plot of predicted versus 

experimental activity for test set at zero intercept 
0.85 < k < 1.15 1.00682 1.00133 Good 

𝐫𝟐 − 𝐫𝟎
𝟐

𝐫𝟐
 

 r2 − r0
2

r2
< 0.1 

0.00109 0.03634 

 

Good 

𝐤′ The slope of the plot of experimental versus 

predicted activity at zero intercept 
0.85 < k′

< 1.15 

0.9881 0.9979 

 

Good 

𝐫𝟐 − 𝐫𝟎
′𝟐

𝐫𝟐
 

 r2 − r0
′2

r2
> 0.1 

0.34946 0.21098 

 

Good 

Y is the experimental activity for a train set,Y̅, the average of the experimental activity for the train set Ŷ, Predicted 

activity for a train set, Ŷloo. leave one out cross-validation predicted activity for the train, YExt. experimental activity 

for the test set, and Ŷext predicted activity for the test set 

 

4.2 Applicability domain 

The values of 0.37 and 0.39 were obtained as the 

precautionary leverage (h*) for the built activity (pEC50) 

and toxicity (pCC50) models using Equation 6, 

respectively. It could be realized from Figures 3 and 4 

that about 98 – 99 % of the compounds are within the plot 

area boundary of   0< h* < 0.37, 0.39 and SDR of ±3 as 

depicted by the models William’s plot (Figures 3 and 4). 

Such observations entail highly reliable predictions [16]. 
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Figure 3. William’s plot: A graphical illustration of standardized residual against leverages of activity (pEC50) 

 

 

 
Figure 4. William’s plot: A graphical illustration of standardized residual against leverage of toxicity (pCC50) 

 

 

Table 2. Definition of molecular descriptors with their corresponding mean effects and collinearity study in the 

activity model 
Descriptors Definition Mean effect Class VIF 

ALogP Ghose-Crippen LogKow -0.03215 

 

2D 1.259308 

MATS7c Moran autocorrelation - lag 7 

/ weighted by charges 

 

0.152607 

 

2D 1.075805 

nHBAcc Number of hydrogen bond 

acceptors 

-0.51101 2D 1.185843 

TDB9v 3D topological distance-based 

autocorrelation - lag 9 / 

weighted by van der Waals 

volumes 

 

1.390546 

 

3D 1.371894 
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Table 3. Definition of molecular descriptors with their resultant mean effects and collinearity evaluation for the toxicity model. 

Descriptors Definition Class Me VIF 

ALogP Ghose-Crippen LogKow 2D -0.0032 1.203 

AATS7i Average Broto-Moreau 

autocorrelation - lag 7 / weighted by 

first ionization potential 

 

2D 1.0168 

 

1.392 

SM1_Dzs Spectral moment of order 1 from 

Barysz matrix / weighted by I-state 

2D -0.0219 1.381 

RPCS Relative positive charge surface 

area -- most positive surface area * 

RPCG 

3D 0.0084 1.172 

 

 

 
Figure 5. Graphical representation of standardized residual against experimental activity (anti-dengue activity) 

 

 
Figure 6. Graphical representation of standardized residual against experimental toxicity (pCC50) 

 

4.3 Variance inflation and systematic error analysis  
The multi-co-linearity results showed that the 

VIF value for each of the descriptors was less than the 

value of 5, entailing a statistically satisfactory model void 

of the multi-co-linearity and hence, not coincidentally 

obtained [16]. The confirmation of the lack of systematic 

error from the models is shown in Figures 5 and 6, the 

uniform dispersal of the data points around the line where 

the standardized residual equal zero signifies the absence 

of systematic error in building the models. 

 

4.4 Descriptors analysis and implication  

The understanding of the information encoded in 

the molecular descriptors contained in the models (Eq. 8 

and 9), provides insights into how the chemical functional 

groups translate into the activity (pEC50) and toxicity 

(pCC50) of the DNV-2 NS4B inhibitors considered. 

Hence, a suitable understanding of the descriptors is 

significant. The descriptors ALogP, MATS7c, nHBAcc, 

TDB9v had mean effect values of -0.03215, 0.152607, -

0.51101, and 1.39054 for the  activity while the 
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descriptors ALogP, AATS7i, SM1_Dzs, and RPCS had 

mean effect values of -0.0032, 1.0168, -0.0219, 0.0084 

for the toxicity. 

From both the activity and toxicity models 

(Equations 8 and 9) respectively. The Ghose-Crippen 

LogKow descriptor (ALogP) is common to both models 

with a negative mean effect in both models entails a 

decrease in activity and increase in toxicity since higher 

pEC50 entails better activity while a higher pCC50 entails 

higher toxicity value, but its percentage contributions in 

both models are significantly low.  

The descriptors MATS7c is the Moran 

autocorrelation - lag 7 / weighted by charges, nHBAcc is 

the number of hydrogen bond acceptors, while TDB9v is 

the 3D topological distance-based autocorrelation - lag 9 

/ weighted by van der Waals volumes. As presented in 

Table 2 positive mean effect value for the activity model 

entails improvement in the inhibitory activity with an 

increase in the value of such descriptor while a negative 

mean effect entails a decrease in the activity. MATS7c 

and TDB9v descriptors had positive mean effects while 

ALogP and nHBAcc had negative mean effect values, 

with TDB9v having the highest contribution. 

For the toxicity model (Equation 9), the 

descriptor AATS7i is the average Broto-Moreau 

autocorrelation - lag 7 / weighted by first ionization 

potential, while SM1_Dzs is the spectral moment of order 

1 from Barysz matrix / weighted by I-state and RPCS is 

the relative positive charge surface area -- most positive 

surface area * RPCG.  The AATS7i and RPCS 

descriptors both have positive mean effect values, with 

AATS7i, having the largest contribution and positive 

mean effect value of 1.0168, which means decreasing the 

value of such factor will greatly reduce the toxicity of 

such compound. 

The MATS7c and AATS7i descriptors in both 

models belong to the autocorrelation descriptors (ATS) 

that are mathematically evaluated using Eq. 10. 

ATSdw=∑ .𝐴
𝑖=1 ∑ .𝐴

𝑗=1 𝛿𝑖𝑗 . 𝑤𝑖𝑑 . 𝑤𝑗𝑑                                   (10)                                                                                               

From Eq. 10, the number of atoms is denoted by 

A, whereas δ
ij
 and d denote the Kronecker function and 

the autocorrelation lag factors respectively, while atomic 

properties such as atomic mass or electronegativity for 

atoms i and j are represented by wi and wj respectively 

[31].  

 

4.5 Prdicted ADMET and drug-likeness 

The ADMET and drug-likeness results of the 

selected indole derivatives are presented in Table 4. From 

Table 4, it is shown that the compounds all passed the oral 

bioavailability criteria recommended by Lipinski. Non-

violation of such criteria by any compound entails oral 

bioavailability and drug-likeness [15].  

Furthermore, the high gastrointestinal absorption 

predicted for the selected indole derivatives could be 

attributed to non-violation of the Lipinski’s rule [15]. A 

compound with gastrointestinal absorption of less than 

30% is regarded as having poor gastrointestinal 

absorption. The gastrointestinal absorption predicted for 

the selected indole derivatives ranged between 94.044 

and 90.219%, hence the compound could be said to have 

high or excellent gastrointestinal absorption as shown in 

Table 4 [30].  

A compound with positive AMES toxicity is 

considered carcinogenic or mutagenic [30].  The selected    

compounds were predicted to have negative AMES 

toxicity except compounds 12 and 53 with positive 

AMES toxicity.

 
Table 4:  ADMET predicted drug-likeness of some selected indole derivatives (12, 33, 37, 45, 51, 53 and 101) with high potency 

against the NS4B receptor 

Compound ID 12 33 37 45 51 53 101 

MW 386.44 404.43 387.43 397.43 404.43 390.86 434.46 

#Rotatable bonds 7 7 7 6 7 6 9 

#H-bond acceptors 3 4 4 4 4 2 5 

#H-bond donors 2 2 2 2 2 2 3 

TPSA 63.35 63.35 76.24 80.15 63.35 54.12 83.58 

Consensus Log P 4.04 4.35 3.3 3.94 4.36 4.59 3.9 

GI absorption High High High High High High High 

Lipinski #violations 0 0 0 0 0 0 0 

Intestinal absorption 

(human) 

92.834 92.566 94.044 93.14 92.785 91.854 90.219 

AMES toxicity Yes No No No No Yes No 

 

5.  Conclusions 

The current finding describes the QSAR study of 

the anti-dengue inhibitory activity, as well as the 

cytotoxicity of indole derivatives. The models developed 

for the prediction of the anti-dengue activity and the 

toxicity of the indole derivatives towards the design of 

non-toxic and potent derivatives of the indole derivative 

proved to be excellent, as such, models were statistically 

valid.  The biological activity of indole derivatives was 

shown to be influenced by ALogP, MATS7c, nHBAcc, 

and TDB9v descriptors while the toxicity was also 
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revealed to be determined by ALogP, AATS7i, SM1_Dzs 

molecular descriptors. 

Based on the reported results, it will be right to 

conclude that the anti-dengue activity, as well as toxicity 

of newly synthesized indole derivatives could be 

predicted with certainty, coupled with the means of 

information obtained from the models. It is also 

promising to design compounds with improved anti-

dengue activity against the multiple serotypes of dengue 

NS4B viral receptor with an improved pharmacokinetic 

profile.
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