Adsorption of SO2 and NO2 on ZrO2 (1 1 0) Surface: Density Functional Theory and Molecular Dynamic Simulation Studies

Document Type : Research Article

Authors

1 Department of Pure and Industrial Chemistry, Bayero University, Kano, Nigeria

2 Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, Bayero University, Kano, Nigeria

Abstract

In order to save the environment, there is an urgent need for control measures due to the rapidly rising concentration of greenhouse gases in the atmosphere. Density functional theory (DFT) and molecular dynamic simulation investigations are used in this study to examine the adsorption characteristics of SO2 and NO2 on zirconia surface. Several global reactivity parameters are analyzed as part of the DFT calculations, including the energy of the highest occupied molecular orbital (EH), the energy of the lowest unoccupied molecular orbital (EL), the separation energy (∆E), electronegativity (χ), ionization potential (I), electron affinity (A), hardness (η), softness (σ), the global electrophilicity index (ω), the nucleophilicity (ε), the energy of back donation (∆Eb-d) and fraction of electron(s) transfer (∆Nmax). The adsorption/binding energies that come from the interaction between the molecules and the ZrO2 (1 1 0) surface are taken into account in the molecular dynamic simulation. Compared to NO2 (∆E = 6.424 eV), the zirconia surface is substantially more sensitive to SO2 (∆E = 5.415 eV) capture, according to the DFT data. The findings of the quenched molecular dynamic simulations also showed that SO2 (Eads = -66.23 kcal/mol) is more likely to adsorb on zirconia surface than NO2 (Eads = -57.50 kcal/mol), despite the fact that both molecules obey the physical adsorption mechanism. S for SO2 and N for NO2 respectively bond to the ZrO2(1 1 0) surface due to the two molecules' favorable orientation, which is parallel to the surface with angles pointing upward. Zirconium oxide can thus be used as an effective adsorbent for the removal of SO2 and NO2 gases from air environments as a result of these discoveries.

Keywords

Main Subjects


  1. Raval and V. Ramanathan, Observational determination of the greenhouse effect. Nature 342 (1989) 758-761. doi: 10.1038/342758a0.
  2. C. Stern, R. W. Bubel, D. B. Turner, D. L. Fox, Fundamentals of air pollution, 3rd ed., Academic press, New York (1997).
  3. Defra, RoTAP. Review of Transboundary Air Pollution: Acidification, Eutrophication, Ground Level Ozone and Heavy Metals in the UK. Contract Report to the Department for Environment, Food and Rural Affairs. Centre for Ecology and Hydrology (2012).
  4. P. Dohmen, M. C. Neill and S. Bell, J. N. B, Air Pollution Increases Aphis fabae pest potential. Nature 307 (1984) 52-53.
  5. K. Mishra and S. R. Prabhu, Study of CO2 adsorption on low cost graphite nanoplatelets. International Journal of Chemical Engineering and Application, 1(3) (2010) 266-269. doi: 10.7763/IJCEA.2010.V1.46.
  6. W. Skarstrom, Press swing adsorption progress for air separation,” U.S. Patent 2 944627 (1960).
  7. Sharma, T. Segado, M. P. Delplancke, H. Terryn, G. V. Baron and J. Cousin-Saint-Remi, Hydrogen chloride removal from hydrogen gas by adsorption on hydratedion-exchanged zeolites. Chemical Engineering Journal 381 (2020) 122512. doi: 10.1016/j.cej.2019.122512.
  8. M. Eid and H. Y. Ammar, Adsorption of SO2 on Li atoms deposited on MgO (100) surface: DFT calculations. Applied Surface Science 257 (2011) 6049-6058. doi: 10.1016/j.apsusc.2011.01.122.
  9. F. Manicone, P. R. Iommetti, L. Raffaelli, An overview of zirconia ceramics: Basic properties and clinic applications. Journal of Dentistry 35 (2007) 819-826. doi: 10.1016/j.jdent.2007.07.008.
  10. Piconi and G. Maccauro, Zirconia as a ceramic biomaterial. Biomaterials 20 (1999). 1-25.
  11. Bachilla-Baeza, I. Rodriguez-Ramos and A. Guerreo-Ruiz, Interaction of carbon dioxide with the surface of zirconia polymorphs Langmuir 14 (1998) 3556-3564. doi: 10.1021/la970856q.
  12. Bolis, G. Magnacca, G. Gerrato and C. Morterra, Microcalorimetric and IR-spectroscopic study of the room temperature adsorption of CO2 on pure and sulphated t-ZrO2. Thermochimaca Acta 379 (2001) 147-161. doi: 10.1016/S0040-6031(01)00613-X.
  13. Pokrovski, K. T. Jung and A. T. Bell, Investigation of CO and CO2 adsorption on tetragonal and monoclinic zirconia. Langmuir 17(14 (2001) 4297-4303. doi: 10.1021/la001723z.
  14. G. R. Gimblett, A. A. Rahman and K. S W. Sing, The origin of porosity in hydrous zirconia gels. Journal of Colloid and Interface Science 8 (1981) 337-345.
  15. Banerjee, K. S. Sourav, G. Pritam, H. Abhiram and G. M. Naresh, Density functional theory and molecular dynamic simulation study on corrosion inhibition of mild steel by mercapto-quinoline Schiff base corrosion inhibitor. Physica. E, 66 (2015) 332-341. doi: 10.1016/j.physe.2014.10.035.
  16. Umaru, and A. M. Ayuba, Computational study of anticorrosive effects of some thiazole derivatives against the corrosion of aluminium. RHAZES: Green and Applied Chemistry, 10 (2020) 113-128. doi: 10.48419/IMIST.PRSM/rhazes-v10.23814.
  17. Dagdag, A. El Harfi, M. El Gouri, Z. Safi, R. T. Jalgham, N. Wazzan, C. Verma, E. E. Ebenso and U. P. Kumar, Anticorrosive properties of Hexa (3-methoxy propan-1, 2-diol) cyclotri-phosphazene compound for carbon steel in 3% NaCl medium: gravimetric, electrochemical, DFT and Monte Carlo simulation studies. Heliyon 5 (2019) e01340. doi: 10.1016/j.heliyon.2019.e01340.
  18. Khalil, Quantum chemical approach of corrosion inhibition. Electrochim. Acta, 48 (2003) 2635e2640. doi: 10.1016/s0013-4686(03)00307-4.
  19. E. Awe, S. O. Idris, M. Abdulwahab, E. E. Oguzie, Theoretical and experimental inhibitive properties of mild steel in HCl by ethanolic extract of Bosciasenegalensis, Cogent Chemistry 1 (2015) 1112676. doi: 10.1080/23312009.2015.1112676.
  20. M. Ayuba and M. Abubakar, Computational study for molecular properties of some of the isolated chemicals from leaves extract of Guiera Senegalensis as aluminium corrosion inhibitor. Journal of Science and Technology 13(1) (2021) 47-56. doi: 10.30880/jst.2021.13.01.006.
  21. A. Nyijime and A. M. Ayuba, Quantum chemical studies and molecular modeling of the effect of coriandrum sativum L. compounds as corrosion inhibitors on aluminum surface. Applied Journal of Environmental Engineering Sciences 6(4) (2020) 344-355.
  22. K. Awad, Quantum chemical studies and molecular modelling of the effect of polyethylene glycol as corrosion inhibitors of an aluminium surface. Canadian Journal of Chemistry 91 (2013) 283-291. doi: 10.1139/cjc.2012-0354.
  23. B. Verma, M. A. Quraishi and A. Singh, 2-Aminobenzene-1,3-dicarbonitriles as green corrosion inhibitor for mild steel in 1 M HCl: Electrochemical, thermodynamic, surface and quantum chemical investigation. Journal of Taiwan Institute of Chemical Engineering 4 (2015) 229-239. doi:10.1016/j.jtice.2014.11.029.
  24. Umaru and A. M. Ayuba, Modeling vitexin and isovitexin flavones as corrosion inhibitors for aluminium metal. Karbala International Journal of Modern Science 7(3) (2021) 206-215. doi: 10.33640/2405-609X.3119.
  25. Gómez, N. V. Likhanova, M.A. Domínguez-Aguilar, R. Martínez-Palou, A. Vela and J. L. Gazquez, Quantum chemical study of the inhibitive properties of 2-pyridyl-azoles. Journal of Physical Chemistry B 110 (2006) 8928-8934. doi: 10.1021/jp057143y.
  26. O. Obi-Egbedi, I. B. Obot, M. I. El-Khaiary, Quantum chemical investigation and statistical analysis of the relationship between corrosion inhibition efficiency and molecular structure of xanthene and its derivatives on mild steel in sulphuric acid. Journal of Molecular Structure 1002 (2011) 86-96. doi: 10.1016/j.molstruc.2011.07.003.
  27. Frau, D. Glossman-Mitnik, Conceptual DFT descriptors of amino acids with potential corrosion inhibition properties calculated with the latest minnesota density functionals. Front. Chem. 5 (2017) 16.
  28. Guo, Z. S. Safi, S. Kaya, W. Shi, B. Tüzün, N. Altunay, Anticorrosive effects of some thiophene derivatives against the corrosion of iron: a computational study. Front. Chem. 6 (2018) 155.
  29. Y. Mi, D. M. Triet, N. T. Tien, “Adsorption of gas molecules on penta-graphene nanoribbon and its implication for nanoscale gas sensor,” Physics Open, vol. 2 pp. 100014, 2020, doi: 10.1016/j.physo.2020.100014.
  30. Guo, X. Ren, Y. Zhou, S. Xu, Y. Gong, S. Zhang, Theoretical evaluation of the corrosion inhibition performance of 1,3-thiazole and its amino derivatives. Arabian Journal of Chemistry 10 (2015) 121–130. doi: 10.1016/j.arabjc.2015.01.005
  31. E. Belghiti, Y. El Oudadi, S. Echihi, A. Elmelouky, H. Outada, Y. Karzazi, M. Bakasse, C. Jama, F. Bentiss, A. Dafali, Anticorrosive properties of two 3,5- dissubstitud-4-amino-1,2,4-triazole derivatives on copper in hydrochloric acid environment: Ac impedance, thermodynamic and computational investigations. Surface Interface 21 (2020) 100692. doi: 10.1016/j.surfin.2020.100692.
  32. Pyykko, M. Astumi, Molecular single bond covalent radii for elements 118. Chemistry, 15(1) (2009) 186-197. doi: 10.1002/chem.200800987.
  33. Ye, L. Liu, Y. Xu, L. Wang, X. Chen, K. Zhang, Y. Liu, S. W. Koh, G. Zhang, SnSe monolayer: A promising candidate of SO2 sensor with high adsorption quantity. Applied Surface 484 (2019) 33-38. doi: 10.1016/j.apsusc.2019.03.346.
  34. Kuang, M. Kuang, H. Yuan, G. Wang, H. Chen and X. Yan, Acidic gases (CO2, NO2 and SO2) capture and dissociation on metal decorated phosphorene. Applied Surface Science 2017. doi: 10.1016/j.apsusc.2017.03.135.
  35. V. Kulishi, O. I. Malyi, C. Persson, P. Wu, Adsorption of metal adatoms on single-layer phosphorene. Physical Chemistry Chemical Physics 17 (2015) 992-1000. doi: 10.1013/C4CP038890H.
  36. Zhao, T. Tang, P. Dang, Z. Zhang, F. Wang, The corrosion inhibition effect of triazinedithiol inhibitors for aluminium alloy in a 1MHCl solution. Metals 7(2) (2017) 42. doi: 10.3390/met7020044.
  37. B. Schlegel, Optimization of equilibrium geometries and transition structures. Journal of Computational Chemistry 3(2) (1982) 214-218. doi: 10.1002/jcc.540030212.
  38. Canses, B. Mennucci and J. Tomasi, A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. Journal of Chemical Physics 107 (1997) 3032-3041. doi: 10.1063/1.474659.
  39. P. Bellafont, F. Illas, P. S. Bagus, Validation of Koopmans' theorem for density functional theory binding energies. Physical Chemistry Chemical Physics 17 (2015) 4015e-4019. doi: 10.1039/C4CP05434B.
  40. H. Madkour, I. H. Elshamy, Experimental and computational studies on the inhibition performances of benzimidazole and its derivatives for the corrosion of copper in nitric acid. International Journal of Industrial Chemistry, 7 (2016) 195e221. doi: 10.1007/s40090-015-0070-8.
  41. A. Khadom, Quantum chemical calculations of someamines corrosion inhibitors/copper Alloy interaction in hydrochloric acid. Journal of Material and  Environmental Science 8 (2017) 1153e1160. http://www.jmaterenvironsci.com.
  42. M. Ayuba, A. Uzairu, H. Abba and G. A. Shallangwa, Hydroxycarboxylic acids as corrosion inhibitors on aluminium metal: a computational study. Journal of Material and Environmental Science 9 (2018) 3026e3034. http://www.j,materenvironsci.com.
  43. Lgaz, R. Salghi, A. Chaouiki, S. Shubhalaxmi, K. S. Jodeh, Bhat, Pyrazoline derivatives as possible corrosion inhibitors for mild steel in acidic media: a combined experimental and theoretical approach. Cogent Engineering, 5 (2018) 1441585. doi: 10.1080/23311916.2018.1441585.
  44. Guo, Z. S. Safi, S. Kaya, W. Shi, B. Tuzun, N. Altunay, C. Kaya, Anticorrosive effects of some thiophene derivatives against the corrosion of iron: a computational study. Frontier Chemistry 6 (2018) 155. doi: 10.3389/fchem.2018.00155.
  45. F. Khaled, Studies of iron corrosion inhibition using chemical, electrochemical and computer simulation techniques. Electrochim. Acta 22 (2010) 6523.
  46. G. Pearson, Hard and soft acids and bases J. Am. Chem. Soc., 85(22) (1963) 3533-3539.
  47. G. Parr, L. Szentpaly, S. Liu, Electrophilicity index. J. Am. Chem. Soc, 121 (1999) 1922-1924.
  48. Bereket, E. Hur, C. Ogretir, Quantum chemical studies on some imidazole derivatives as corrosion inhibitors for iron in acidic medium, J. Mol. Struct. (Theochem). 578 (2002) 79e88. https://doi.org/10.1016/S0166-1280(01)00684-4.
  49. Belghiti, S. Echihi, A. Dafali, Y. Karzazi, M. Bakasse, H. Elalaoui-Elabdallaoui, Computational simulation and statistical analysis on the relationship between corrosion inhibition efficiency and molecular structure of some hydrazine derivatives in phosphoric acid on mild steel surface. Applied surface science 491 (2019) 707-22.
  50. O. Olasunkanmi, I. B. Obot, M. M. Kabanda and E. E. Ebenso, Some quinoxalin-6-yl derivatives as corrosion inhibitors for mild steel in hydrochloric acid: experimental and theoretical studies. Journal of Physical Chemistry C 119 (2015) 16004-16019. doi: 10.11021/acs.jpcc.5b03285.
  51. Bereket, C. Ogretir and A. Yurt, Quantum mechanical calculations on some 4-methyl-5-substituted imidazole derivatives as acidic corrosion inhibitor for zinc. Journal of Molecular Structure (Theochem) 571 (2001) 139-145. doi: 10.1016/s01661280(01)005528.
  52. A. Siadati, A. Mirabi, Diels-Alder versus 1, 3-dipolar cycloaddition pathways in the reaction of C20 fullerene and 2-furan nitrile oxide. Progress in Reaction Kinetics and Mechanism, 40(4) (2015) 383-390. http://dx‏ doi:10.3184/146867815X14413752286065.
  53. Pakravan, S. A. Siadati, The possibility of using C20 fullerene and graphene as semiconductor segments for detection, and destruction of cyanogen-chloride chemical agent. Journal of Molecular Graphics and Modelling, 75, (2016)80-84.‏ http://dx.doi.org/doi:10.1016/j.jmgm.2016.12.001.
  54. Vessally, S. A. Siadati, A. Hosseinian, L. Edjlali, Selective sensing of ozone and the chemically active gaseous species of the troposphere by using the C20 fullerene and graphene segment. Talanta, 162 (2016) 505-510.‏ http://dx.doi.org/10.1016/j.talanta.2016.10.010.