Theoretical study of interaction between Mexiletine drug and pristine, Si-, Ga- and Al-doped boron nitride nano sheet.

Document Type : Research Article

Author

payamenoor

Abstract

ABSTRACT



In this study, the adsorption behavior of pristine, -Si, -Ga and -Al doped boron nitride nanosheet (BNN) is investigated toward the mexiletine drug using density functional theory (DFT) calculations. Total energies, geometry optimizations were obtained and density of state (DOS) analysis was performed at B3LYP level of theory with the 6-31G∗ basis set. The adsorption energy (Ead) between mexiletine and the pristine, Si-, Ga- and Al-doped BN nanosheet was changed in the following order: Ga-Complex-N(NH2) > Al-Complex-N(NH2) > Si-Complex-O

The Ead of the mexiletine/BNN complex is −4.73kcal/mol, which is very low interaction so that the adsorption is not suitable. The Ead of the mexiletine/Si-doped BNN complex is −22.14kcal/mol, which is a suitable interaction so that the desorption may be occurred readily. Besides, the Eg significantly increased from 4.47 eV to 5.68 eV and the rate of the change is % ΔEg = −27.20% which shows the suitable sensitivity of the Si-doped BN nanosheet to the adsorption of drug. Therefore, it can be concluded that the Si-doped BN nanosheet can be a promising candidate to being a sensing ability over the mexiletine drug from both Ead and Eg parameters.

Keywords

Main Subjects


[1]  M.  J. Marmura, Intravenous lidocaine and mexiletine in the management of trigeminal autonomic cephalalgias. Current.  Pain.  Headache.  Reports., 14 (2010) 145-50.
 
[2] W. Baran, E. Adamek, J.  Ziemia-nska,  Effects of the presence of sulfonamides in the
environment and their influence on human health. J. Hazard. Mater., 196 (2011) 1–15.
 
[3] X. Zhang,  X. Sun, T. Lv, Preparation of PI porous fiber membrane for recovering oil-paper insulation structure. J. Mater. Sci. Mater., 31 (2021) 13344–13351.
 
[4] R. Chen, Y. Cheng, P. Wang, Enhanced removal of Co(II) and Ni(II) from highsalinity aqueous solution using reductive self-assembly of three-dimensional magnetic fungal hyphal/graphene oxide nanofibers. Sci. Total. Environ., 756(2021) 143871.
 
[5] R. Chen, Y.Cheng, P. Wang, Facile synthesis of a sandwiched Ti3C2TxMXene/nZVI/fungal hypha nanofiber hybrid membrane for enhanced removal of Be(II) from Be(NH2)2 complexing solutions. Chem.  Eng. J., (2021)129682.
 
[6] A. Białk-Bieli-nska, S. Stolte, J. Arning, Ecotoxicity evaluation of selected sulfonamides. Chemosphere. 85 (2011) 928–933.
 
[7] S. F. Rastegar, A. A. Peyghan,  H. Ghenaatian, NO2 detection by nanosized AlN sheet in the presence of NH3: DFT studies. Appl. Surf.  Sci., 274 (2013) 217–220.
 
[8] J. He, X. Liu, L. Song, High annealing stability of in AlZnOnanofiberfield-effecttransistorswith improvedmorphology
byAldoping. J. Phys. Chem.Lett., 59 (2021)1339–1345.
 
[9] Y. V. Berdinsky, A. V. Shevtsov, S. V. Okotrub, Sensor properties of fullerene films and fullerene compounds with iodine. Chem. Sustain. Dev., 8 (2008) 141–146.
 
[10] Z. Wang, T. Zhang, Large-scale one-pot synthesis of water-soluble and biocompatible upconversion nanoparticles for dual-modal imaging. Colloids. Surf. B., 198 (2021) 111480.
 
[11] P. Dong, T. Zhang, H. Xiang, Controllable synthesis of exceptionally small-sized superparamagnetic magnetite nanoparticles for ultrasensitiveMR imaging and angiography. J. Mater. Chem. B Mater. Biol Med., 9 (2021)  958–968.
 
[12] S Zhang, S. Zhao, S. Huang, Photocatalytic degradation of oxytetracycline under visible light by nanohybrids of CoFe alloy nanoparticles and nitrogen-/sulfur-codoped mesoporous carbon. Chem. Eng., 420 (2021)130516.
 
[13] A. A. Peyghan, M. Moradi, First-principle study of methanol adsorption on Ni(Pd)-decorated grapheme. J. Iran. Chem. Soc., 12 (2015) 751–756.
 
[14] Z. Li, In situ chemical lithiation transforms diamond-like carbon into an ultrastrong ion conductor for dendrite-free lithium-metal anodes. Adv. Mater., (2021)
 
[15] H. Wang, T. Song, Z. Li, Exceptional high and reversible ammonia uptake by two dimension few-layer BiI3 nanosheets. ACS. Appl. Mater. Interfaces., 13 (2021) 25918–25925.
 
[16] T. Oku, M.  Kuno, H. Kitahara, Atomic structures andproperties of boronnitride andcarbon nanocage fullerene materials. Int. J. Inorg. Mater., 3 (2001) 597–612.
 
[17] J. He, X. Liu, L.Song, HighAnnealing Stability of InAlZnONanofiber Field-EffectTransistors with Improved Morphology by Al Doping. J Phys Chem Lett., 12 (2021) 1335–1345.
 
[18] C. Zhi, Y. Bando, C. Tang, Boron nitride nanotubes/polystyrene composites. J. Mater. Res., 21 (2006) 2794–2800.
 
[19] R. Faramarzi, M. Falahati, M. Mirzaei, Interactions of fluorouracil by CNT and BNNT: DFT analyses. Adv. J. Sci. Eng. 1 (2020) 62–66.
 
[20] S. Prodhan, S. Mazumdar, S. Ramasesha, Correlated electronic properties of a graphene nanoflake. coronene. Molecules.,  24 (2019)  730.
 
[21] D. Lee, S. Song, J. Hwang, (2013). Enhanced mechanical properties of epoxy nanocomposites by mixing noncovalently functionalized boron nitride nanoflakes. Small., 9 (2013) 2602–2610.
 
[22] A. Pakdel, Y. Bando, D. Golberg, Nano boron nitride flatland. Chem Soc Rev., 43 (2015) 934–959.
 
[23] M. Samadizadeh, A.A. Peyghan, S. F. Rastegar, ensing behavior of BN nanosheet toward nitrous oxide: A DFT study. Chin Chem Lett., 26 (2015) 1042–1045.
 
[24] A. C. Srivas, S. K. Bhat, P. K. Jain, (2015). Electronic transport properties of BN sheet on adsorption of ammonia (NH3) gas. J Mol Model., 21 (2015)  39.
 
[25] S. Noorizadeh, E. Shakerzadeh,  (2012). Formaldehyde adsorption on pristine, Al-doped and monovacancy defected boron nitride nanosheets: a first principles study. Comput Mater Sci., 56 (2021) 122–130.
 
[26] F. Behmagham, E. Vessally, B. Massoumi, A computational study on the SO2 adsorption by the pristine, Al, and Si doped BN nanosheets. Superlattice. Microst., 100 (2016) 350–357.
 
[27] R. N. Goyal, V. K. Gupta, N. Bachheti, Fullerene-C60-modified electrode as a sensitive voltammetric sensor for detection of nandrolone – an anabolic steroid used in doping. Anal. Chim. Acta., 597 (2007)  82–89.
 
[28] H. Yin, C. Han, Q. Liu, Recent Advances and Perspectives on the Polymer Electrolytes for Sodium/Potassium-Ion Batteries. Small., 17 (2021) 2006627.
 
[ 29] E. Vessally, M. D. Esrafili, R. Nurazar, p. Nematollahi , A. Bekhradnia, A DFT study on electronic and optical properties of aspirin-functionalized B12N12 fullerene-like nanocluster. Struct.  chemist.,  28 (2017) 735-748.
 
[ 30] M. Schmidt, K. Baldridge, J. BoatzGeneral atomic and molecular electronic structure system. J. Comp. Chem., 14(1993) 1347–1363.
 
[  31] N. OBoyle,  A. Tenderholt,  K. Langner, A library for package independent computational chemistry algorithms. J.  Comput. Chem.,  29 (2008)  839–845.
 
[32 ] S. F. Boys, F. Bernardi, (1970). Calculation of smallmolecular interactions by differences  energies – some procedures with reduced errors. Mol Phys. 19 (1970)  553–566
 
[33] F. Gharibzadeh, E. Vessally,  E. Edjlali L, A DFT study on Sumanene, Corannulene and nanosheet as the anodes in Li−ion batteries. Iran J Chem Chem Eng., 39 (2020) 51–62.
 
[34] E. Vessally, M. Babazadeh, F. Alipour,  A computational study on the some small graphene-like nanostructures as the anodes in Na−ion batteries. Iran J Chem Chem Eng., 40 (2021) 691–703.
 
[35] E. Vessally, P. Farajzadeh, E. Najafi, Possible sensing ability of boron nitride nanosheet and its Al– and Si–doped derivatives for methimazole drug by computational study. Iran J Chem Chem Eng.,  40 (2021) 1001–1011.
 
 [36] M. R. PoorHeravi, S. Habibzadeh, A. G. Ebadi,  Substituent effects of fusedHammick silylenes via density functional theory survey. J Phys Org Chem., (2021) 4264.
 
[37] Z. Rostami, M. Asnaashariisfahani, S. Ahmadi, Adensity functional theory investigation on 1H-4-germapyridine-4-ylidene & the unsaturated heterocyclic substituted ones. J Mol Struct., 1238 (2021) 130427.
 
[38] A.  Hassanpour, S. Yasar, A. Ebadi, Thermodynamic stability, structural and electronic properties for the C 20-n Al n heterofullerenes (n=1–5): a DFT study. J Mol Model.,  27 (2021)  1–12.
 
[39] A. Hassanpour,  P. D. K. Nezhad, A. Hosseinian, Characterization of IR spectroscopy, APT charge, ESP maps, and AIM analysis of C20 and its C20−nAln heterofullerene analogous (n=1–5) using DFT. J.  Phys Org Chem., (2021) 4198.
 
[ 40] A. Hassanpour, S. Ebrahimiasl, L. Youseftabar-Miri , A DFT study on the electronic detection of mercaptopurine drug by boron carbide nanosheets. Comput Theoret Chem., 1198 (2021) 113166.
 
[41] A. Hassanpour, S. Ahmadi, P. D. K. Nezhad,  Sensing properties of Al-and Si-doped HBC nanostructures toward gamma-butyrolactone drug: a density functional theory study. Comput . Chem., 1197 (2021) 113163.
 
[42  ] A. Hassanpour,  N. Farhami, M. Derakhshande,  Magnesium and calcium ion batteries basedon the hexa-peri-hexabenzocoronene nanographene anode materials. Inorg.  Chem.  Comm., 129 (2021)108656.
 
[43  ] M. R. J. Sarvestani, S. Majedi, A DFT study on the interaction of alprazolam with fullerene (C20). J.  Chem.  Lett. , 1 (2020) 32–38.
 
[44] M. Kamel, A. Morsali, H. Raissi, Theoretical insights into the intermolecular and mechanisms of covalent interaction of flutamide drug with COOH and COCl functionalized carbon nanotubes: a DFT approach. Chem.  Rev.  Lett.,  3 (2020) 23–37.
 
[45  ] M. R. J. Sarvestani, R. Ahmadi,  B. F. Rik, Procarbazine adsorption on the surface of single walled carbon nanotube: DFT studies. Chem.  Rev.  Lett., 3 (2020) 175–179.
 
[46] M. R. J. Sarvestani,  Z. Doroudi, Fullerene (C20) as a potential sensor for thermal and electrochemical detection of amitriptyline: a DFT study. J. Chem.  Lett., 1 (2020) 63–68.
 
[47] A. Redondo, Y. Zeiri, J. J. Low, Application of transition state theory to desorption fromsolid surfaces: ammonia on Ni(111). J.  Chem.  Phys.,  79 (1993)  6410–6415.
 
[48] R. Kumar, N. Goel, M. Kumar, UV-activatedMoS2 based fast and reversibleNO2 sensor at room temperature. ACS.  Sens. , 2(2017)  1744–1752.
 
[ 49] A. Bano,  J. Krishna, D. K. Pandey, An ab initio study of sensing applications of MoB2 monolayer: a potential gas sensor. Phys. Chem.  Chem. Phys.,  21 (2019)  4633–4640.
 
[50] J. Li,  Y. Lu, Q. Ye, Carbon nanotube sensors for gas and organic vapor detection. Nano.  Lett., 3 (2003)  929–933.
 
[ 51] N. L. Hadipour,  A. A. Peyghan, H. Soleymanabadi, Teoretical study on the Al-doped ZnO nanoclusters for CO chemical sensors. J . Phys.  Chem C., 119 (2015)  6398–6404.
 
[ 52] A, Ahmadi, N. L. Hadipour, M. Kamfiroozi, Theoretical study of aluminum nitride nanotubes for chemical sensing of formaldehyde. Sens.  Actuators.  B., 161(2012)  1025–1029.
 
[53] J. Beheshtian,  A. A. Peyghan, Z. Bagheri,  Detection of phosgene by Sc-doped BN nanotubes: a DFT study. Sens.  Actuators.  B., (2012) 846–852.