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Introduction 
Breast cancer is a disease characterized by the 
uncontrolled proliferation of cells. Various types of 
breast cancer exist [1]. The type of breast cells that 
develop into cancer determines the specific subtype of 
breast cancer [2]. The most common cancer among 
women is breast cancer, which exhibits diverse 
molecular characteristics [3]. To address this diversity, 
treatment strategies have evolved over the past 
decade, emphasizing biologically-directed 
medications and minimizing side effects [4]. Although 
certain characteristics, such as the impact of tumor 
load or metastatic patterns, influence treatment 
decisions, modern approaches primarily consider 
molecular heterogeneity [5]. Multimodal treatment 
advancements have increased the likelihood of 
successful therapy in 70–80% of patients [2]. 
However, effective treatments for advanced 
(metastatic) breast cancer remain elusive [6]. The 
primary goals for treating advanced breast cancer are 

prolonging life, symptom control, and minimizing 
medication risk to enhance the overall quality of life 
[7]. 
Breast cancer (BC) is the leading cancer among 
women in the United States, both in terms of diagnosis 
and cancer-related deaths. Despite improvements in 
patient care and screening, it remains a significant 
health concern [8]. In 2019, 268,600 new BC cases 
were diagnosed in women, leading to 41 deaths [9]. 
BC is a complex illness with various subtypes, with 
most responding well to hormonal and targeted 
treatments, resulting in favorable survival rates [10]. A 
notable subtype is triple-negative breast cancer 
(TNBC), accounting for 15-20% of annual BC 
diagnoses [11]. TNBC is distinct due to its aggressive 
behavior, poor prognosis, higher recurrence rates, and 
reduced survival rates [12–13]. Despite progress, the 
FDA has not approved specific remedies for TNBC. 
Chemotherapy remains the primary option, despite 
resistance development and adverse effects [14]. 
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This study presents a computational approach for designing potent compounds 
against breast cancer. A robust quantitative structure-activity relationship (QSAR) 
model, developed using genetic algorithms and multilinear regression analysis, 
predicts chemical activity (pGI50) against breast cancer receptors. The model's 
reliability is validated with external metrics, emphasizing precision and strong 
relationships. Molecular docking investigations explore interactions between 2,4-
diphenyl indenol [1,2-b] pyridinol derivatives and breast cancer receptors (2RMJ, 
4OAR, 4RDH, 3ERT). Remarkable binding patterns are observed, insinuating at 
potential DNA gyrase inhibition. The compound's molecular properties and 
descriptors offer valuable insights into physicochemical characteristics, 
druglikeness, and potential pharmacological behavior. These findings contribute 
to drug design and development for personalized breast cancer therapy. 
This research integrates computational methodologies with experimental data, 
paving the way for effective and targeted breast cancer treatments. The study 
emphasizes the potential of computational analysis to enhance precision and 
efficacy in breast cancer treatment strategies.   
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Chemotherapy's long-term effects include infertility, 
osteoporosis, heart damage, and, rarely, leukemia, 
impacting survivors' quality of life [5]. 
The study's primary objective was to investigate the 
QSARs of synthesized compounds regarding their 
topoisomerase inhibitory and antiproliferative 
activities [15]. For many years, topoisomerase IIα has 
stood out as a significant focus in the fight against 
cancer due to its vital role in rapidly dividing cancer 
cells [16]. Among drugs aimed at inhibiting 
Topoisomerase IIα, those known as Topoisomerase II 
poisons are regularly employed in clinical settings 
[16]. Nevertheless, the application of topoisomerase II 
poisons leads to significant ramifications stemming 
from the DNA toxicity they cause through their 
mechanism of action. Hence, there is a compelling 
need to create a model for Topoisomerase IIα using an 
alternative computational method approach for 
regulation. The investigation explored the effects of 
hydroxyls in the indenopyridine ring and assessed the 
biological impact of introducing phenyl, phenol, and 
halophenyl moieties. The compounds with phenyl and 
phenol moieties exhibited remarkable improvements 
in their actions against the T47D cancer cell line. 
Some compounds displayed strong antiproliferative 
activity within the nanomolar range [17]. 
The research aims to develop a robust QSAR model 
with minimal side effects, an affordable cost, and 
efficacy against four breast receptors using scientific 
data from published works. The synthesized drug was 
evaluated under a structure-activity relationship, 
showing promise as a preclinical candidate for 
developing a robust chemotherapeutic agent for breast 
cancer [15]. The receptors that have been chosen each 
have a unique role in the development and treatment 
of breast cancer. Receptor 2RMJ is a DNA gyrase and 
has implications for preventing the growth of cancer 
cells. Receptor 4OAR is involved in cell signaling and 
suggests that it can help regulate the progression of 
breast cancer [17]. Receptor 4RDH is linked to anti-
cancer compounds, which provides insights into 
potential therapeutic pathways. Receptor 3ERT is 
significant as an estrogen receptor and highlights its 
importance in breast cancer therapy, and it gives us 
more information about the effects of hormones [18]. 
By studying these receptors' interactions, we can 
improve our understanding of compound mechanisms 
and their potential as treatments for breast cancer. 
 
  Material and Methods: 
Data Collection: This study utilized a statistical 
dataset of 84 anticancer synthesis compounds acquired 
from the Journal of Medicinal Chemistry [15]. The 
Genetic Algorithm was combined with Friedman's 
Multivariate Adaptive Regression Splines (MARS) 
and Holland's Genetic Algorithm [13]. GFA differs 

from other statistical strategies in that it generates a 
population of models instead of a single model [19]. 
The model underwent both internal and external 
validation to determine predictability and reliability 
[20].  
 
Geometry Optimization  
Quantum chemical descriptors were generated 
using Spartan 14 software (Spartan 14v1.14) and 
the 6-31G* basis set [21]. The compounds were 
optimized using Density Functional Theory 
(DFT) with the Lee-Yang-Parr hybrid functional 
(B3LYP) [22]. 
 
Descriptor Calculation 
 For each molecule shown in Table 1 (Sup. M), 
various physicochemical descriptors were 
determined [22, 38]. The "PaDel-Descriptor 
Model 2.20" program was used to generate an 
additional set of molecular descriptors. These 
descriptors were then combined with the quantum 
chemical descriptors obtained from the low-
energy conformers [23].  
 
Data Pre-Treatment/Feature Selection: 
Molecular descriptors were pre-processed by 
removing descriptors with constant values and 
pairs of variables with correlation coefficients 
greater than 0.7. This process was conducted 
using the "Data Pre-Treatment GUI 1.2" tool, 
employing the V-WSP method [24]. 
 
Dataset Division: The dataset of 84 chemical 
structures was divided into training and test sets 
using the Kennard Stone algorithm approach, 
implemented through the "Dataset Division GUI 
1.2" program [25]. This application tool facilitates 
the selection of reasonable training and testing 
sets from a data source [26]. 
 
QSAR Model Development and Validation:  
The study employed both quantum chemical and 
molecular descriptors as independent variables 
and response variables (pGI50 and pLC50) as 
dependent variables. The Genetic Function 
Approximation (GFA) strategy was employed for 
both response variables through a multiple 
regression approach using the Material Studio 
program [20].                                                                               =   (        )  …………..Eqn1 
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GFA utilizes the Friedman Lack-of-Fit (LOF) 
metric to assess a model's fitness during the 
evolution process. LOF (Eqn 1) is calculated in 
Materials Studio using the formula provided by 
[27]:     =      /((1 −  (  +    ) /  )2) Here, SSE represents the sum of squared 
errors, c denotes the number of terms in the 
model that are not constant, and dp represents the 
total number of descriptors in all model terms 
(excluding the constant term), [28]  
 
 Internal Model Validation:  
The internal cross-validation was conducted using 
the leave-one-out (LOO) method to validate the 
constructed models [29]. In this approach, the 
model is built using the remaining compounds 
after randomly excluding one compound from the 
dataset in each iteration [30]. The developed 
model is then applied to predict the activity of the 
excluded compound. This procedure is performed 
for each chemical and repeated accordingly. The 
cross-validated squared correlation coefficient, 
R2cv (Q2), was calculated using the following 
formula [31& 38].   = 1 − ∑(           ) ∑(         )           …Eqn  2 
                                                             = ∑ (     , −    )        … … . .    3    =   ∑ |  −    |    … … … … .    4              
Ypred represents the projected activity of the practice 
compounds, YOBS denotes the observed activity of the 
training set compounds, and Y signifies the mean 
observed activity of the instructional set compounds, 
[29]. PRESS is a metric used to evaluate how 
effectively a regression model predicts new, unseen 
data points. It is frequently employed in cross-
validation to assess a model's ability to generalize. 
The formula calculates the sum of the squared 
differences between the model's predicted values and 
the actual observed values for each data point. 
Essentially, PRESS Equation (3) measures the overall 
accuracy of predictions by considering the magnitude 
of errors. A lower PRESS indicates superior predictive 
performance, suggesting that the model is capturing 
the underlying patterns in the data. MAE Equation (4) 
is a straightforward metric used to quantify the 
average magnitude of errors between a predictive 
model's estimated values and the actual observed 
values. It provides a simple and interpretable measure 
of how closely the model's predictions align with the 
true values. The formula calculates the average 
absolute difference between predictions and actual 
values. Similar to PRESS, a lower MAE is desirable, 
signifying better predictive accuracy. MAE is easy to 

understand and is useful for comparing different 
models or assessing a model's performance over 
multiple predictions. 
 
External Model Validation 
To evaluate the predictive capability of the generated 
model, external validation was employed to calculate 
the predictive R2 (R2

pred) Equation (5) value and to 
apply the model for predicting activity values in the 
assessment group [23 & 38].        = 1− ∑(      (    )  (    )) ∑( (    )              )     … … …    5         
 Ypred (test) and Y (test) represent the anticipated and 
observed activity levels of the test compounds, 
respectively, while Y (training) denotes the mean activity 
value of the training set. The predicted correlation 
coefficient, R2

pred (Eqn 5), is determined by 
extrapolating the expected activity of each component 
in the test set. However, it has been recognized that 
R2

pred may not be sufficient to fully represent the 
external predictability of a model, as its value is 
influenced by (Y(test)-Y(training)

2 [31]. 
Docking: We obtained crystal structures of the central 
enzymes (DNA gyrase) from the Protein Data Bank 
(PDB). The structures have PDB codes 2RMJ, 4OAR, 
4RDH, and 3ERT. Docking simulations were 
conducted using Auto Dock 4.2 within the PyRx 
software. To establish accurate binding interactions 
among the enzymes (proteins), and ligands 
(molecules), all water molecules, ligands, and 
cofactors associated with the enzymes were eliminated 
using Discovery Studio Visualizer software. 
Subsequently, the enzyme protein was saved in PDB 
format, recognized by the PyRx software, and 
converted into a macromolecule [32-33]. The docking 
interaction between the central enzyme and the protein 
was then computed to evaluate binding affinities. 
Various interaction types, such as hydrogen bonding, 
electrostatic interactions, and hydrophobic 
associations, were visualized and analyzed. Following 
that, all optimized ligands were saved in PDB format, 
which was also recognized by the PyRx software [26]. 
 
Pharmacokinetics study 
 PkCSM, an online server 
(http://structure.bioc.cam.ac.uk/pkcsm), and 
SwissADME 
(http://www.swissadme.ch/index.php) are 
available web engines designed to assess the 
ADMET properties and drug-likeness of small 
molecules [34]. One of the most crucial 
parameters in the pre-clinical stage of drug 
discovery is Lipinski’s Rule of Five. It proposes 
that for a chemical compound to be permeable or 
easily absorbed into the body's system, it 

http://structure.bioc.cam.ac.uk/pkcsm)
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shouldn't violate more than 2 of these criteria: 
molecular weight ˂ 500, number of hydrogen 
bond donors ˂ 5, number of hydrogen bond 
acceptors ˂ 10, calculated Log P ˂ 5, and polar 
surface area (PSA) ˂ 100. Additionally, the 
bioavailability score (BAS) should be > 0.5 [35].  
 
Result  
Result of Model development and validation 
 Table 1 summarizes QSAR validation 
parameters, while Figure 1 compares experimental and 
predicted values. Figure 2 displays predicted values 
against residuals, and Figure 4 shows predicted values 
against leverage values. Additionally, Figure 5 
illustrates the relationship between the first principal 
component (PC1) and the second principal component 
(PC2). The QSAR analysis was performed using 
regression. The robustness of the generated QSAR 
model was illustrated through an interactive activity 
graph (Figs. 1 and 2), which depicted the relationship 
between predicted and experimental activity. The 
QSAR model's equation is represented as follows: 
pIC50=5.4003−4.5609⋅ATS6i+4.4266⋅ATS6s−0.6453⋅
MATS5v−1.2466⋅MATS4i−0.9855⋅GATS7m−0.2981⋅SpMax3_Bhm+2.2067⋅Dp.     

The equation represents the relationship 
between the pIC50 value and the various variables in 
the model. The coefficients indicate the impact of each 
variable on the pIC50 value, and the equation allows 
for the prediction of pIC50 based on the values of these 
variables. The training set's characteristics were as 
follows: N(Train) = 64, R2

Train = 0.8186, R2 Adjusted (train) 
= 0.7959, F = 36.0902, Q2(LOO) = 0.7654, R2-R2

ADJ 
= 0.0227, LOF = 0.0484, RMS.tr = 0.1719. For the test 
set: N(test) = 20, R2

test = 0.5901, RMSE test = 0.2081, 
PRESS_EXT = 0.8662, MAE_EXT = 0.1723.  
The model's performance was also evaluated by 
comparing the predicted and actual pGI50 values in 
Fig. 1. The model equation was used to predict the 
values, as depicted in a scatter plot (Fig. 1), indicating 
strong model performance. Examining residual 
quantities and analyzing the standard residual against 
credit are shown in various figures (Fig. 2, & Fig. 3). 
The model exhibited excellent agreement with the test 
set data, as depicted in Table 1 and SM Table 1. 
Notably, no significant relative or systematic error 
was observed, indicating the model's reliability. The 
applicability domain of the model was established, 
with most compounds within the specified range 
except for a few outliers due to dissimilarity in 
chemical structures. Normalized residuals showed no 
unusual compounds > 3D for the dataset. The model's 
strength was further supported by statistical 
parameters such as MSE, RMSE, the slope of the 
models, and their coefficients. The predictive and 
descriptive potential of the model was evident, 

demonstrating its robustness in predicting anti-cancer 
activity for the breast tumor cell line. The model, 
based on the training set, successfully forecasted the 
activity of the compound validation set, and lower 
residual values from both the training and test sets 
indicated a strong correlation between activity and 
shape, as shown in Figures 1, 2, 3, 4, and 5. The 
generated QSAR model exhibited a high potential for 
accurately predicting anti-cancer activity based on the 
breast tumor cell line. 

The regression coefficient (R2) value close to 
1 or 0 indicated substantial descriptor variation 
capture, contributing to a reliable model. The 0.5901 
value further indicated the model's effectiveness. 
When assessing the accuracy and reliability of a 
model based on external data, external validation 
metrics are utilized. The RMSE Ext. score of 0.2081 
represents the level of prediction error, with lower 
values indicating higher accuracy. The MAE Ext score 
of 0.1723 provides information on prediction 
accuracy. PRESS Ext, which measures squared 
differences, has a score of 0.8662, while Next, which 
shows predictable variance, has a score of 0.5901. Q2-
F1, Q2-F2, and Q2-F3 are cross-validated correlations 
for subsets. The CCC Ext score of 0.8711 evaluates 
precision, r2m aver. (0.4454) gauges the strength of 
the relationship between variables, and r2m delta 
(0.1965) highlights variability. These metrics 
combined assess the model's predictive accuracy, 
generalization, and consistency with external data, 
revealing its reliability and suitability for predicting 
activity across various contexts. 

The results in Table 1 show that the model 
passes all validation parameters. Figure 1 displays a 
scatter plot comparing experimental and predicted 
activity values using a model equation. While most 
compounds closely match the predictions, Figure 2 
displays a scatter plot of predicted values versus 
residual values. Figure 3 shows the connection 
between standard residuals (on the Y-axis) and 
leverage values (on the X-axis) for the HAT i/i (h* = 
0.375) criterion. This graph can help spot any data 
points that could potentially have a significant impact 
on the model. Figure 4 displays a scatter graph that 
shows how predicted values from the model equation 
relate to leverage values using the HAT i/i (h* = 
0.375) criterion. This graph can help identify data 
points that might have a big impact on how well the 
model performs. You can get a better idea of how to 
refine the model and make sure it's strong enough for 
real-world use. Figure 5 presents a scatter plot that 
displays Principal Component 2 (PC2) with 20.34% 
explained variance and Principal Component 1 (PC1) 
with 40.77% explained variance. This graph is useful 
for visualizing data patterns and relationships, which 
can help in comprehending intricate multivariate data.
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Table 1. Accepted QSAR Tool for Model Validation 
Validation tool Interpretation  Acceptable 

value  
Develop model 
value 

Remarks 

R2 Trian Co-efficient of 
determination 

≥ 0.5  0.8186   
 

Pass 

Q2CV   Cross validation co-
efficient  

˃0.5                                     0.7654   
 

Pass 

R2adj       Adjusted co-efficient 
of determination 

˃0.5        0.7959   
 

Pass 

  R2Q2cv    Different between R2 
and Q2cv 

≥ 0.03           0.0532   
 

Pass 

Next/test set Minimum number of 
external tests set 

> 5 20 Pass 

R2test set Co-efficient of 
determination of 
external and test set 

≥0.5 0.5901   
 

Pass 

Delta rm2  <0.2  0.1965 
 

Pass 

CCC Concordant correlation 
coefficient 

≥ 0.8  0.8711   
 

Pass 

RMSE Root means square 
error 

< 0.3 0.2081 Pass 

LOF   0.0484    Pass 
F  Fisher statistic  >10 36.0902     Pass 

 

 
Fig. 1. Graph of experimental values against predicted values 
.  
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Fig. 2. Graph of predicted value against Residual values 

 
Fig. 3. Graph of standard residual against Leverage values  
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Fig. 4.  Scattered Graph of predicted by Model equation against Leverage Values  
 

 
Fig. 5. graph of first principal component (PC1) against second principal component (PC2) 
 
Docking  

Analyzing the molecular interactions that lead 
to the binding of ligands to their target receptors 
provides valuable insights. To conduct this analysis, 
four different breast cancer receptor cell lines were 
considered: 2RMJ, 4OAR, 4RDH, and 3ERT (Figure 
6-9). These receptor structures were downloaded from 
the protein data bank (PDB) and prepared for docking 
analysis, as shown in Figures 6 to 9. The results of the 
receptor-ligand interactions with the lowest binding or 
affinity energy are presented in Figures 10, 11, 12, and 
13. Table 2 presents docking results showing the four 
receptors and their amino acid residue interactions 
with the ligands. The strength of the interaction 

between the ligands and the receptor binding pocket is 
measured by these binding affinities. The analysis 
shows that different ligands have varying binding 
affinities with different receptors.  

The ligand 28 with the receptor 2RMJ (Table 
2 and figure 10) forms hydrogen bonds with LYS 745, 
LEU 788 and PRO 794, forming a unique interaction 
driven by electrostatics and hydrogen bonds. It also 
establishes pi-alkyl bonds with ALA 743 and LEU 
718, and a pi-sigma interaction with VAL 726. This 
complex binding mechanism generates a strong 
affinity, potentially guiding the development of 
targeted anti-cancer drugs. 
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The enzyme 4RDH (Table 2 and Figure 11) exhibits a 
robust ligand binding affinity of -10 kcal/mol, 
indicating a strong interaction. This binding is 
characterized by specific amino acid interactions 
within the receptor's binding site, including alkyl 
bonding with LYS 88A, pi-alkyl interaction with ALA 
95A, and a pi-sigma bond with ILE 92A (Figure 11). 
These interactions signify a harmonious fit between 
the receptor and ligand, crucial for stable binding and 
potential biological effects. 
The enzyme 4OAR and ligand interaction shown in 
Figure 12 exhibits high binding affinity with amino 
acids ASN 719 and GLY 722, aided by hydrophobic 
interactions with MET 759, LEU 726, TRP 735, and 
LEU 763. Complexity is increased by unusual 

interactions like pi-sigma with LEU 718 and amide pi-
stacked with PHE 778, highlighting its potential 
therapeutic outcome. 
Enzyme 3ERT displayed in Table 2 shows a robust 
binding affinity of -10 kcal/mol and engages with 
specific amino acid residues: LEU 354 A through 
alkyl interaction, TRP 383 via pi-pi stacking, LYS 529 
involving pi-cation/anion interaction, LEU 536 
through pi-alkyl interaction, and GLY 380 through 
van der Waals forces as shown in figure 13. These 
diverse interactions highlight the intricate nature of 
ligand-receptor binding and suggest potential 
mechanisms for influencing the receptor's function in 
the context of breast cancer treatment. 

 

 
Fig. 5. 3D Prepared Crystals Receptor of 2RMJ 

 
Fig. 6. 3D Prepared Crystal receptor 4RHD  

 
Fig. 7.  3D Prepared Receptor 4AOR 
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Fig. 8.  3D prepared crystals Receptor   3ERT  

 

 
Fig. 9.  3D and 2D ligand protein (2RMJ) interaction with amino acid residues 

 
Fig. 10. 3D and 2D Ligand protein(4RDH) interaction with amino acid residues 
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Fig. 11.  3D and 2D ligand protein (4OAR) interaction with amino acid residues 

  
  

  
Fig. 12. 3D and 2D ligand protein (3ERT Receptor) interaction 
 
 
Table 2. Docking result showing the four receptors and their amino acid residue types of interactions with the ligands  
Compound 
ID 

Receptor(S) Types of interaction Amino-acid 
residue 

Binding 
score 
(kcal/mol) 

  Hydrogen Bond LYS745  
  Hydrogen Bond LEU788  
  Pi-Alkyl ALA743  
  Pi-Sigma VAL726  
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28 2RMJ Pi-Alkyl LEU718  -10.9 
  Hydrogen Bond  GLY796  
  Hydrogen Bond PRO794  
     
  Alkyl LEU354  
  Pi-Pi stacked TRP383  

83 3ERT Pi-cation/anion LYS529 -10.0 
  Alkyl LEU536  
  Van der Waal GLU380  
     
  Alkyl LYS88  

83 4RDH Pi-Alkyl ALA95 -10.0 
  Pi-sigma ILE92  
     
  Hydrogen Bond  GLN725  
  Pi-sulfur MET754  
  Alkyl/ Pi-Alkyl LEU726 -10.2 

84 4OAR Alkyl/ Pi-Alkyl TRP735  
  Halogen (fluorine)  GLY722  
  Hydrogen Bond ASN719  
  Pi-sigma LEU718  
  Amide Pi-stacked  PHE773  
  Alky Leu763  
 
 
4.3 Pharmacokinetics result  
             The result of pharmacokinetic in Table 3 of 
the three compounds reveals crucial observations 
about their potential pharmaceutical properties and 
suitability for drug development. However, the table 
shows the Bioavailability score, molecular weight, 
gastro intestinal absorption, Lipinski's rule of five, and 
synthetic accessibility.  
 Compound ID 84 (C25H16F3NO2) has a molecular 
weight of 419.40 g/mol and predominantly consists of 
31 aromatic heavy atoms. It exhibits moderate 
hydrophobicity but displays poor water solubility, 
suggesting low gastrointestinal absorption. It also 
shows potential as a P-glycoprotein (P-gp) substrate 
and interactions with specific cytochrome P450 
enzymes. This compound is unlikely to penetrate the 
blood-brain barrier. Although it adheres to Lipinski's 
rule of five, it violates Ghose's and Egan's rules. Its 
bioavailability score is 0.55, with no structural 
liabilities. 

Secondly, Compound ID 28 (C24H16ClNO2) 
has a molecular weight of 385.84 g/mol. It is 
categorized as "poorly soluble" and exhibits variable 

lipophilicity. Pharmacokinetically, it indicates high 
potential for gastrointestinal absorption but low 
permeability of the blood-brain barrier. It also 
interacts with specific cytochrome P450 enzymes and 
shows potential as a P-gp substrate. While this 
compound aligns with some druglikeness rules, its 
lipophilicity varies. 
Lastly, Compound ID 83 possesses a moderate 
molecular weight and a fraction of sp3 hybridized 
carbon atoms, limiting its rotational flexibility. It 
features several hydrogen bond acceptors and donors, 
indicating relevance to binding interactions. However, 
its lipophilicity suggests solubility challenges. In 
terms of pharmacokinetics, it demonstrates poor 
blood-brain barrier permeability, potential as a P-gp 
substrate, and interactions with specific cytochrome 
P450 enzymes. Its evaluation against druglikeness 
rules is mixed, while bioavailability and synthetic 
accessibility scores guide its potential as a drug 
candidate.. 
Table 3 Pharmacokinetics studies table of 
Bioavailability score, molecular weight
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Formula MW 
TPS
A 

MLO
GP GI  

Pg
p  

CYP2
C19  

CYP2
D6  

Gho
se  

Eg
an  

Mueg
ge 

BA
S 

 Synthetic 
Accessibil
ity 

C25H16F3
NO2 

419.
4 

53.3
5 4.32 

Lo
w 

Ye
s Yes Yes 1 1 1 0.6 

 
3.21 

C24H16Cl
NO2 

385.
84 

53.3
5 4.02 

Hi
gh 

Ye
s Yes Yes 1 1 1 0.6 

 
3.12 

C25H16F3
NO2 

419.
4 

53.3
5 4.32 

Lo
w 

Ye
s Yes Yes 1 1 1 0.6 

 
3.25 

 
Conclusion 
This research aims to develop efficient treatments for 
diverse breast cancer types using QSAR modeling and 
molecular docking. The validated QSAR model 
suggests promising anti-cancer potential for the 
proposed compounds. The study signifies a significant 
advancement in oncology, offering insights for 
innovative therapies. Ongoing research may enhance 
outcomes and quality of life for breast cancer patients. 
Pharmacokinetic profiles provide crucial drug 
development insights. 
In contrast to other research, this research 
differentiates itself by adopting a computational 
approach for designing anti-cancer compounds 
against breast cancer. It incorporates a more 
extensive dataset and places significant emphasis 
on the utilization of a QSAR model, along with 
conducting molecular docking and 
pharmacokinetics investigations. 
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