Theoretical view on interaction between boron nitride nanostructures and some drugs

Document Type : Review article


1 College of Health Sciences, University of Human Development, Sulaimaniyah, Kurdistan region of Iraq

2 Department of Chemistry, Miandoab Branch, Islamic Azad University, Miandoab, Iran

3 Department of Chemistry, Miyaneh Branch, Islamic Azad University, Miyaneh, Iran


Many advancing aspects of technology and science are in the field of nanotechnology, in which levels and interfaces are of particular importance in determining the performance and usage. One related application in which interactions play an important role is the synthesis of drugs. Nanotechnology and nanodelivery are comparatively modern procedure and rapidly evolving science that uses nanoscale materials to be used as diagnostic systems or delivery of therapeutic drugs to particular aimed address in a controlled sites manner. Also drug infiltration through cell membranes is a modern challenge. Since Nano boron nitride has unique properties, it is one of the most promising mineral nanostructures ever explored. In this review, all the practical aspects of boron atoms in drug delivery and andnanostructured drugs are surveyed and the nano-boron nitride application is taken in review much more.


  • Hosseinian, E. Vessally, S. Yahyaei, L. Edjlali, A. Bekhradnia, J. Clust. Sci. 28 (2017) 2681–2692.
  • Nejati, E. Vessally, P. Delir Kheirollahi Nezhad, H. Mofid, A. Bekhradnia, J. Phys. Chem. Solids, 111 (2017) 238–244.
  • (a) Blase, X.; Rubio, A.; Louie, S. G.; Cohen, M. L. Europhys. Lett. 1994, 28, 335. (b) Rubio, A.; Corkill, J. L.; Cohen, M. L. Phys. ReV. B 1994, 49, 5081.
  • Chopra, N. G.; Zettl, A. Solid State Commun. 1998, 105, 297, (b) A. Pakdel, Y. Bando, D. Golberg, Chem. Soc. Rev. 43 (2014) 934–959.
  • (a) Xiao, Y.; Yan, X. H.; Cao, J. X.; Ding, J. W.; Mao, Y. L.; Xiang, J. Phys. ReV. B 2004, 69, 205415, (b) Han, W. Q.; Mickelson, W.; Cumings, J.; Zettl, A. Appl. Phys. Lett. 2002, 81, 1110, (c) A. Pakdel, C.Y. Zhi, Y. Bando, D. Golberg, Mater. Today 15 (2012) 256–265.
  • Golberg, D.; Bando, Y.; Kurashima, K.; Sato, T. Scripta Materialia 2001, 44, 1561.
  • (a) A. Star, E. Tu, J. Niemann, J. C. P. Gabriel, C. S. Joiner and C. Valcke, Proc. Natl. Acad. Sci. USA, 2006, 103, 921–926, (b) SS Wong, E Joselevich, AT Woolley, CL Cheung, CM Lieber. Nature 394 (1998), 52-55, (c) X Chen, A Kis, A Zettl, CR Bertozzi. Proceedings of the National Academy of Sciences 104 (2007), 8218-8222, (d) K. Kostarelos, L. Lacerda, G. Pastorin, W. Wu, S. Wieckowski, J. Luangsivilay, S. Godefroy, D. Pantarotto, J. Briand, S. Muller, M. Prato, A. Bianco, Nat Nanotechnol. 2 (2007) 108-113, (e) N.W. S. Kam, M. O' Connell, J. A. Wisdom, H. Dai. Proc. Natl Acad. Sci. USA 102, (2005) 11600-11605.
  • (a) X. Chen, P. Wu, M. Rousseas, D. Okawa, Z. Gartner, A. Zettl, C. R. Bertozzi, J Am Chem Soc. 131, 3 (2009) 890-891, (b) G Ciofani, S Danti, D D'Alessandro, S Moscato, A Menciassi. Biochemical and biophysical research communications 394 (2010), 405-411, (c) G. Ciofani, Expert Opin. Drug Deliv. 7 (2010) 889–893, (d) G. Ciofani, S. Danti, L. Ricotti, D. D'Alessandro, S. Moscato, V. Mattoli, and A. Menciassi, Current Nanoscience 7 (1), 94-109, (e) G. Ciofani, S. Danti, G.G. Genchi, D. D’Alessandro, J.L. Pellequer, M. Odorico, V. Mattoli, M. Giorgi, Int. J. Nanomedicine 7 (2012) 19-24, (f) G. Ciofani, S. Danti, Methods Mol Biol. 811 (2012) 193-206.
  • F. Boys, F. Bernardi, Calculation of small molecular interactions bydifferences of separate total energies − some procedures with reduced errors,Mol. Phys. 19 (1970) 553–561.
  • Nejatia, A. Hosseinianb, E. Vessally, A. Bekhradnia, L. Edjlali, Appl. Surf. Sci. 422 (2017) 763–768.
  • Hosseinian, E. Vessally, A. Bekhradnia, S. Ahmadi, P. Delir Kheirollahi Nezhad, J. INORG. ORGANOMET. P. 28 (2018) 1422–1431.
  • (a) L. Larsson, Acta. Chim. Scand. 12 (1958) 783–785, (b) B. Simpson, Biotechnol. J. 2 (2004) 100–105.
  • A. Siadatia, E. Vessallyb, A. Hosseinian, L. Edjlalidi, Synthetic Metals 220 (2016) 606–611.
  • Vessally, S. Soleimani-Amiri, A. Hosseinian, L. Edjlali, A. Bekhradnia,Physica E 87, 308–311.
  • Bagheri, M. Babazadeh, E. Vessally, M. Es'haghi, A. Bekhradnia, Inorg. Chem. Commun. 90 (2018) 8–14.
  • Wang, X.-F. Zhou, X. Zhang, Q. Zhu, H. Dong,M. Zhao, A.R. Oganov, Nano Lett. 15 (2015) 6182–6186.
  • Kreuter (1994) Colloidal drug delivery systems. CRC Press, New York.
  • S. Soppimath, T.M. Aminabhavi, A.R. Kulkarni, W.E. Rudzinski, J. Control Release 70 (2001)1–20.
  • Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, R. Langer, Nat Nanotechnol 2 (2007) 751-760.
  • P. Torchilin, Pharm Res 24 (2007) 1–16.
  • S. Jabr-Milane, L.E. van Vlerken, S. Yadav, M.M. Amiji, Cancer Treat Rev, 34 (2008) 592–602.
  • E. van Vlerken, M.M. Amiji, Expert Opin Drug Deliv 3 (2006) 205–216.
  • Duverger, T. Gharbi, E. Delabrousse, F. Picaud, Phys Chem Chem Phys 16 (2014) 18425–18432.
  • Farmanzadeh, S. Ghazanfary, C R Chim 17 (2014) 985–993.
  • Saikia, S.K. Pati, R.C. Deka, Appl Nanosci 2 (2012) 389–400.
  • T. Baei, M.R. Taghartapeh, E.T. Lemeski, A. Soltani, Phys B 444 (2014) 6–13.
  • Vessally, M.D. Esrafili, R. Nurazar, P. Nematollahi, A. Bekhradnia, Struct. Chem. 28 (2017) 735–74