In-silico modeling of inhibitory activity and toxicity of some indole derivatives towards designing highly potent dengue virus serotype 2 NS4B inhibitors.

Document Type : Research Article


1 Department of Pure and Applied Chemistry, Faculty of Science, University of Maiduguri, P.M.B. 1069, Maiduguri, Borno State, Nigeria.

2 Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria.


The global prevalence of dengue virus (DENV) infection has become a source of great concern to humanity. As such, infection, if left untreated, could progress to a life-threatening stage called dengue hemorrhagic fever or dengue shock syndrome. A large percentage of the world's population could be at risk of being infected by the dengue virus. The DENV NS4B receptor is essential in viral replication and hence could in principle be suitable as a therapeutic target in the treatment of dengue viral infection. The augmentation of existing agents that could inhibit the dengue virus is important. In this research, various classes of molecular descriptors were generated. Quantitative structure-activity relationship studies (QSARs) have been conducted to correlate the molecular properties of some indole derivatives with their anti-dengue activity and toxicity. The inhibitory activity and toxicity prediction models were statistically valid and robust, with acceptable statistical validation factors such as predicted R2pred., adjusted R2adj., cross-validated Q2 and R2 regression coefficient, etc. (R2pred. = 0.64448, R2adj. = 0.59223, cR= 0.57134, Q2CV = 0.64448, R2 = 0.63201) and (R2pred. = 0.81813, R2adj. = 0.56015, cR= 0.5386, Q2CV = 0.50548, R2 = 0.60645), respectively. The models revealed that the average Broto-Moreau autocorrelation-lag 7/weighted by first ionization potential (AATS7i), number of hydrogen bond acceptors (nHBAcc) for activity and 3D topological distance-based autocorrelation-lag 9/weighted by van der Waals volumes (TDB9v) descriptors were found to strongly influence the anti-dengue biological activity (pEC50) and toxicity (pCC50) of the indole derivatives, respectively. The indole derivatives were predicted to be orally bioavailable with excellent gastrointestinal absorption (94.044–90.219%). The DENV-2 NS4B inhibitory activity, as well as the cytotoxicity of indole derivatives with no experimental data, could be predicted with high precision using the models developed, which could further lead to a cut in experimental cost as well as the design of highly potent and less toxic derivatives.


Main Subjects

 [1]. Z. Fatima, M. Idrees,  M. A. Bajwa, Z. Tahir, O. Ullah, M. Q. Zia, A. Hussain,  M. Akram, B. Khubaib,  S. Afzal and S. Muni, Serotype and genotype analysis of dengue virus by sequencing followed by phylogenetic analysis using samples from three mini outbreaks-2007-2009 in Pakistan. BMC microbiology, 11 (2011) 1-8.
[2]. M. G. Guzman, M. Alvarez and S. B. Halstead, Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection. Archives of virology, 158 (2013) 1445-59.
[3]. M E. Beatty, A. Stone, D. W. Fitzsimons, J. N. Hanna, S. K. Lam, S. Vong, M. G. Guzman, J. F. Mendez-Galvan, S. B. Halstead, G. W. Letson, J. Kuritsky, Best practices in dengue surveillance: a report from the Asia-Pacific and Americas Dengue Prevention Boards. PLoS neglected tropical diseases, 4 (2010) e890.
[4]. S. P. Lim, C. G. Noble, C. C. Seh, T. S. Soh, A. El Sahili, G. K. Chan, J. Lescar, R. Arora, T. Benson, S. Nilar and U. Manjunatha, Potent allosteric dengue virus NS5 polymerase inhibitors: mechanism of action and resistance profiling. PLoS pathogens, 12 (2016) e1005737.
[5]. A. Samimi, S. Zarinabadi, A. Bozorgian, Optimization of Corrosion Information in Oil and Gas Wells Using Electrochemical Experiments, International Journal of New Chemistry, 8 (2021), 149-163.
[6]. S. P.Lim, Q. Y. Wang, C. G. Noble, Y. L. Chen, H. Dong, B. Zou, F. Yokokawa, S. Nilar, P. Smith, D. Beer and J. Lescar, Ten years of dengue drug discovery: progress and prospects. Antiviral research, 100 (2013) 500-19.
[7]. T. T. Nguyen, S. Lee, H. K. Wang, H. Y. Chen, Y. T. Wu, S. C. Lin, D. W. Kim and D. Kim, In vitro evaluation of novel inhibitors against the NS2B-NS3 protease of dengue fever virus type 4. Molecules, 18 (2013) 15600-12.
[8]. R. E. Blanton, L. K. Silva, V. G. Morato, A. R.  Parrado, J. P.  Dias, P. R. Melo, E. A. Reis, K. A. Goddard, M. R. Nunes, S. G. Rodrigues and P. F. Vasconcelos, Genetic ancestry and income are associated with dengue hemorrhagic fever in a highly admixed population. European Journal of Human Genetics, 16 (2008) 762-5.
[9].  A. Guzman and R. E. Istúriz, Update on the global spread of dengue. International journal of antimicrobial agents, 36 (2010) S40-2.
[10]. P. D. Zanotto, E. A. Gould, G. F. Gao, P. H. Harvey and E. C. Holmes, Population dynamics of flaviviruses revealed by molecular phylogenies,  Proceedings of the National Academy of Sciences, 93 (1996) 548-53.
[11].  A. Balasubramanian, T. Teramoto, A. A. Kulkarni, A. K. Bhattacharjee and R. Padmanabhan, Antiviral activities of selected antimalarials against dengue virus type 2 and Zika virus. Antiviral research, 137 (2017) 141-50.
[12].  A. Bozorgian, B. Raei, Thermodynamic modeling and phase prediction for binary system dinitrogen monoxide and propane, Journal of Chemistry Letters 1 (2020) 143-148.
[13]. D. Bardiot, M. Koukni, W. Smets, G.  Carlens, M. McNaughton, S. Kaptein, K. Dallmeier, P. Chaltin, J. Neyts and A. Marchand, Discovery of indole derivatives as novel and potent dengue virus inhibitors. Journal of Medicinal Chemistry, 61 (2018) 8390-401.
[14]. M. Bagheri Sadr, A. Bozorgian, An Overview of Gas Overflow in Gaseous Hydrates, Journal of Chemical Reviews 3 (2021), 66-82
[15]. A. Daina, O. Michielin and V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports. 7 (2017) 1-3.
[16]. S. N. Adawara, G. A. Shallangwa, P. A. Mamza and A. Ibrahim, Molecular docking and QSAR theoretical model for prediction of phthalazinone derivatives as new class of potent dengue virus inhibitors. Beni-Suef University Journal of Basic and Applied Sciences, 9(2020) 1-7.
[17].  W. J. Hehre and W. W. Huang, Chemistry with computation: an introduction to SPARTAN. Wavefunction, Incorporated, 1995.
[18].  A. Bozorgian, Investigation of the effect of Zinc Oxide Nano-particles and Cationic Surfactants on Carbon Dioxide Storage capacity, Advanced Journal of Chemistry, Section B: Natural Products and Medical Chemistry, 3 (2021) 54-61.
[19].  S. N. Adawara, G. A. Shallangwa, P. A. Mamza and A. Ibrahim, In Silico Studies of Oxadiazole Derivatives as Potent Dengue Virus Inhibitors. Chemistry Africa, 4 (2021) 861-8.
[20].  P Ambure, R. B. Aher, A. Gajewicz, T. Puzyn and K. Roy, “NanoBRIDGES” software: open access tools to perform QSAR and nano-QSAR modeling. Chemometrics and Intelligent Laboratory Systems, 15 (2015) 1-3.
[21]. S. B. Olasupo, A. Uzairu, G. A. Shallangwa and S. Uba, QSAR modeling, molecular docking and ADMET/pharmacokinetic studies: a chemometrics approach to search for novel inhibitors of norepinephrine transporter as potent antipsychotic drugs. Journal of the Iranian Chemical Society, 17 (2020) 1953-66.
[22].  J. H. Friedman, Multivariate adaptive regression splines. The annals of statistics, 19 (1991) 1-67.
[23]. R. Veerasamy, H.  Rajak, A. Jain, S. Sivadasan, C. P. Varghese and R. K. Agrawal, Validation of QSAR models-strategies and importance. Int. J. Drug Des. Discov, 3 (2011) 511-9.
[24].  A. Bozorgian, Investigation of Hydrate Formation Kinetics and Mechanism of Effect of Inhibitors on it, a Review, Journal of Chemical Reviews, 3 (2021), 50-65.
[25]. D. Weintrop, E. Beheshti, M. Horn, K.  Orton, K. Jona, L. Trouille and U. Wilensky, Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25 (2016) 127-47.
[26].  N. Nikolova and J. Jaworska, Approaches to measure chemical similarity–a review. QSAR & Combinatorial Science, 22 (2003) 1006-26.
[27].  A. Golbraikh, X. S. Wang, H. Zhu and A. Tropsha, Predictive QSAR modeling methods and applications in drug discovery and chemical risk assessment. Handbook of computational chemistry, 1 (2012) 1309-42.
[28].  T. I. Netzeva, A. P. Worth, T. Aldenberg,  R. Benigni, M. T. Cronin, P. Gramatica, J. S. Jaworska, S. Kahn, G. Klopman, C. A. Marchant and G. Myatt, Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships: The report and recommendations of ecvam workshop 52. Alternatives to Laboratory Animals, 33(2): (2015) 155-73.
[29]. S. Dimitrov, G. Dimitrova,  T. Pavlov, N. Dimitrova, G. Patlewicz, J. Niemela and O.  Mekenyan, A stepwise approach for defining the applicability domain of SAR and QSAR models. Journal of chemical information and modeling, 45(4) (2005) 839-49.
[30].  D. E. Pires, T. L. Blundell, and D. B. Ascher, pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 58 (2015) 4066-72.
[31].  V. Consonni and R. Todeschini, Molecular Descriptors for Chemoinformatics: Volume I: Alphabetical Listing/Volume II: Appendices, References. John Wiley & Sons; 2009.